EUROPEAN SPACE COMPONENT CONFERENCE

ESCCON 2011

THE EXPERIENCE OF COMMERCIAL COMPONENTS INSERTION IN PEM (GAIA PROGRAM)

P. Peres / A. Gomez – 16 March 2011

All the space you need

WHY COMMERCIAL COMPONENTS ?

- The demanding performances of the GAIA-PEM (Proximity Electronic Module) made necessary the use of commercial components for several critical functions.
- Driving requirements for GAIA-PEM design are :
 - In first place, electrical performances :
 - Low noise
 - Power dissipation stability
 - Limitations in power dissipation
 - Very tight timing uncertainty
 - Limited volume and weight
 - Minimum interconnections

All the space you need 16 March 2011 - 2

HOW COMMERCIAL COMPONENTS HAVE BEEN SELECTED ?

- The selection of these components has been made along the different R&D activities.
- During these studies it has been analysed many alternatives for each function looking for a radiation tolerant, at least evaluated or used in previous missions.
- The most relevant components have been included in different design alternatives, assembled and characterised with respect to their main relevant parameters influencing the PEM performances.
- No space or military qualified component has been identified to meet the PEM performances.

All the space you need 16 March 2011 - 3

WHAT WE DID ?

- Collaboration within Astrium (Spain & France) for the selection, procurement and use of commercial components.
- Selection process based on procedures commonly built by the French multi-partnership :
 - Guidelines on the use of parts out of manufacturers specified temperature range (up rating) : RNC-CNES-Q-60-511
 - Selection procedure for electrical, electronics and electromechanical (EEE) commercial components intended to be used in space applications : RNC-CNES-Q-60-514

Components selection :

- Identification of commercial candidates (including back up)
- Preliminary assessment
- Risk analysis
- Proposed commercial components baselines

All the space you need 16 March 2011 - 4

WHAT TYPES OF COMMERCIAL COMPONENTS HAVE BEEN ANALYZED ?

 More than 60 video operational amplifiers, rail to rail and single supply voltage, providing very low noise and low input offset voltage and input bias current.

Identified candidate : AD 8028

More than 50 ADC's providing 16 bit or better resolution, preferably SAR architecture with no pipeline delay and with conversion time faster that 1,2 us.

Identified candidate : AD 7621

 More than 15 analog switches, providing low R_{on}, fast switching time, and low and single supply voltage.

Identified candidate : MAX 313, 1st back up candidate : ADG 451, 2nd back up candidate : SWI ISL43110

Several fast clock drivers.

Identified candidate : EL 7457

Multiple, preferable octal or larger, 8-bits DACs.

Identified candidate : MAX 521 (back up candidate : AD 7228)

All the space you need 16 March 2011 - 5

GENERIC POLICY FOR COMMERCIAL COMPONENTS APPROVAL (1)

1) TO COMPLETE A JUSTIFICATION DOCUMENT (JD)

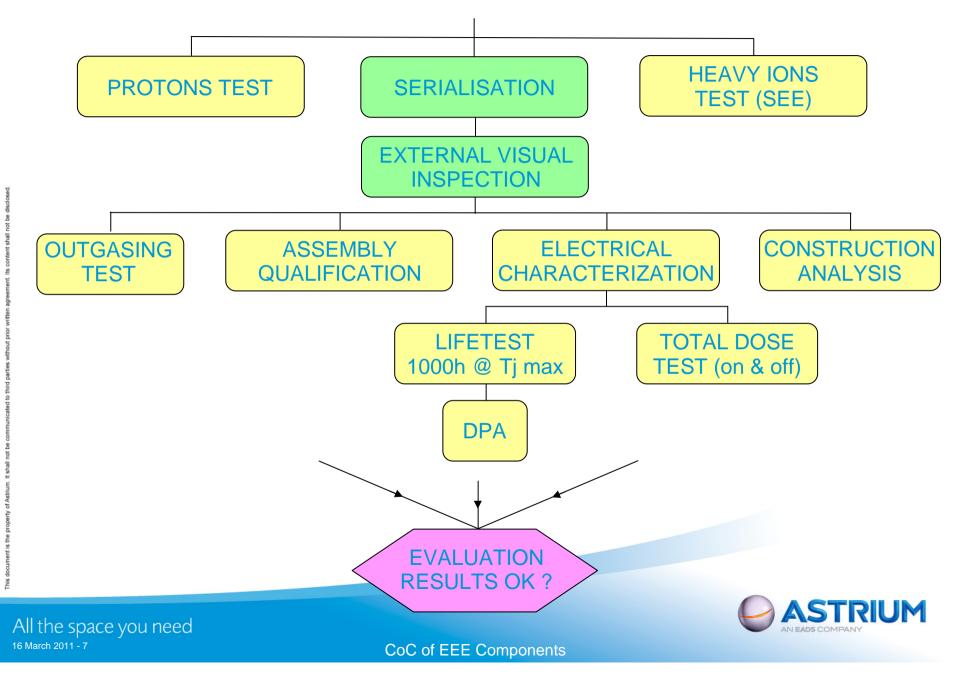
- To collect available data on the commercial components (general information, literature, supporting data on previous lots, data sheet)
- To define an evaluation plan (including radiation tests)
- To define the screening flow of the FM lot.

2) TO PROCURE THE FM LOT

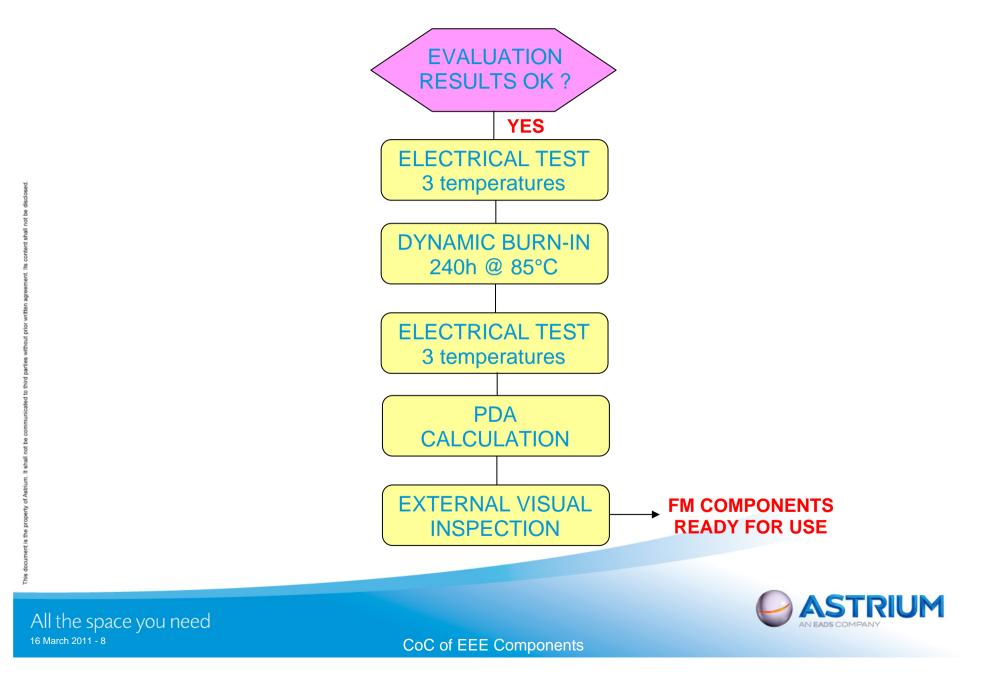
The FM lot is procured, according to manufacturer data sheet.

3) TO PERFORM AN EVALUATION OF THE FM LOT

 The evaluation of the FM lot is performed, according to the JD plan and to the risk analysis raised to identify the most urgent tests to be done (SEE, constructional analysis, life test, out gassing...).


4) TO SCREEN THE WHOLE FM LOT

- The FM lot is screened by the user (based on the evaluation results)
- Since evaluation is done on the FM lot, no additional LAT is requested



All the space you need 16 March 2011 - 6

GENERIC EVALUATION FLOW CHART

GENERIC SCREENING FLOW CHART (BY USER)

JUSTIFICATION DOCUMENTS RESULTS OF THE SELECTION

FUNCTION	TYPE	MNFCT	CASE	TEMP RANGE	RISK ANALYSIS CONCLUSIONS
VIDEO AMPLIFIER	AD8028AR	AD / US	SOIC 8	-40°C/+125°C	 AD major manufacturer = no risk for front / back end Transient sensitivity
ANALOG SWITCH	MAX313L	MAX / US	SOIC 24	$ -40^{\circ} ./+85^{\circ} .$	MAXIM = risky manufacturer => CA to be anticipated
ANALOG SWITCH (Back up)	ADG451BR	AD / US	SOIC 16	-40°C/+85°C	 AD major manufacturer = no risk for front / back end TID (at VLDR) Transient sensitivity
CLOCK DRIVER	EL7457CS	INT / US	SOIC 16	-40°C/+85°C	Urgent CA to identify mask reference for SEL test
ADC	AD7621AST	AD / US	LQFP 48	-40°(:/+85°(:	AD major manufacturer = no risk for front or back end
DAC	MAX521 BEWG	MAX / US	SOIC 24	-40°C/+85°C	MAXIM = risky manufacturer => CA to be anticipated

All the space you need 16 March 2011 - 9

EVALUATION RESULTS DIE & PACKAGE

TYPE	PROCURED LOT	CONSTRUC- TION ANALYSIS	OUT GASSING	ASSY QUALIF	EVAL. RESULTS	
AD 8028	One DC	ОК	ОК	ОК	OK	
MAX 313	One DC	FAILED	Not done	Not done	REJECTED	
ADG 451	One DC	ACCEPTABLE	ОК	ОК	ОК	
EL 7457	One DC	ОК	ОК	ОК	ОК	
AD 7621	One DC	ОК	ОК	ОК	ОК	
MAX 521	One DC	ОК	ОК	ОК	ОК	

All the space you need

EVALUATION RESULTS ELECTRICAL & ENDURANCE

TYPE	ELECT. CHARACT. @ -40°C, 25°C, 85°C,125°C	DYNAMIC LIFE TEST	ELECT. TESTS AFTER LT @ -40°C, 25°C, 85°C,125°C	
AD 8028	Acceptable	1000H @ 125°C	0 reject	
ADG 451	Acceptable	1000H @ 125°C	0 reject	
EL 7457	Acceptable	1000H @ 105°C	0 reject	
AD 7621	Acceptable	1000H @ 115°C	0 reject	
MAX 521	Acceptable	1000H @ 125°C	0 reject	

All the space you need

EVALUATION RESULTS TOTAL DOSE (RVT)

		DOSE RATE	TID RESULTS
VIDEO AMPLIFIER	AD 8028 AR	140 Rad(Si) / h	OK up to 30 Krad
ANALOG SWITCH	ADG 451 BR	LDR = 40 Rad(Si) / h VLDR = 3.3 Rad(Si) / h	LDR: Is (OFF) < 0.6 Krad VLDR: Is (OFF) < 0.3 Krad
CLOCK DRIVER	EL 7457 CS	40 Rad(Si) / h	OK up to 30 Krad
ADC	AD 7621 AST	140 Rad(Si) / h	OK up to 30 Krad
DAC	MAX 521 BEWG	40 Rad(Si) / h	OK up to 30 Krad

All the space you need 16 March 2011 - 12

EVALUATION RESULTS HEAVY IONS & PROTONS

	SEL or SEB/SEGR	SEU	SET	PROTONS
AD 8028	SEL Insensitive	Insensitive	Sensitive	Insensitive up to 190 MeV
ADG 451	SEL Insensitive	Insensitive	Sensitive	NA
EL 7457	SEB sensitive SEGR Sensitive	Insensitive	Sensitive	NA
AD 7621	SEL Insensitive	SEU sensitive SEFI sensitive	Insensitive	Insensitive up to 190 MeV
MAX 521	SEL Insensitive	Sensitive	Sensitive	NA

All the space you need

SCREENING RESULTS

	ELECTRICAL TESTS BEFORE BI @ 3 T°	DYNAMIC BURN IN	ELECTRICAL TESTS AFTER BI @ 3 T°
AD 8028	OK (1 reject)	240H @ 85°C	OK (0 reject)
ADG 451	OK (0 reject)	240H @ 85°C	OK (0 reject)
EL 7457	OK (1 reject)	240H @ 85°C	OK (0 reject)
AD 7621	OK (11 rejects)	240H @ 85°C	OK (7 rejects)
MAX 521	OK (0 reject)	240H @ 85°C	OK (0 reject)

All the space you need 16 March 2011 - 14

SYNTHESIS OF EVALUATION AND SCREENING RESULTS

		PROC LOT	EVALUA- TION RESULTS	RVT	SEL or SEB/SEGR	SEU	SET	SCREE- NING
AMPLI	AD8028	DC	ОК	OK up to 30 Krad	SEL Insensitive	Insensitive	Sensitive	OK
ANALOG SWITCH			LOT REJECTED (MAVERICK LOT			LOT)		
ANALOG SWITCH	ADG451	One DC	ОК	Sensitive (VLDR)	SEL Insensitive	Insensitive	Sensitive	OK
CLOCK DRIVER	EL7457	One DC	ОК	OK up to 30 Krad	SEB/SEGR Sensitive	Insensitive	Sensitive	ОК
ADC	AD7621	One DC	ОК	OK up to 30 Krad	SEL Insensitive	SEU + SEFI sensitive	Insensitive	ОК
DAC	MAX521	One DC	ОК	OK up to 30 Krad	SEL Insensitive	Sensitive	Sensitive	OK

All the space you need 16 March 2011 - 15

EXPERIENCE AFTER EQUIPMENTS MANUFACTURING

- 1) 110 FM Proximity Electronic Modules (PEM) manufactured
- 2) 96 FM PEMs already tested
- 3) Feed back after components mounting :
 - No problem during mounting
- 4) PEM electrical performances
 - PEM qualification : successful
 - No application temperature highest than Tmax :
 - +60°C during qualification (QM)
 - +55°C during acceptance (FM).
 - Electrical tests at PEM level showed no drift and a good reproducibility of performances

All the space you need 16 March 2011 - 16

CONCLUSION - COST SYNTHESIS

- Cost of components selection :

(Initial engineering activities, data collection, results analysis, Justification Document completion)

- Cost of components procurement : 8 types & 8900 components procured 5 types & 2688 available components for FM
- Cost of tests activities : (Evaluation, screening, radiations, ...)

TOTAL AMOUNT (cost of ownership)

350 K€ (27%)

50 K€ (4%)

900 K€ (69%)

1300 K€

All the space you need 16 March 2011 - 17

CONCLUSION - OVERALL EXPERIENCE (1)

- The selection of commercial components has been done for performance reasons (access to high capacity or speed) results in higher performing, reduced size and lighter equipments with less interconnections.
- Successful approach by combining evaluation and lot acceptance test on the FM lot :
 - => It reduces the risk of quick evolution of mask & technology between evaluation and procurement of flight components.
- In 5 of 6 cases => the lot qualification results have been successful.
- Successful management of traceability w.r.t. radiation.
- The use of commercial components induces a lot of engineering activities (selection, JD, evaluation, ...) generating very high non recurring cost :
 - => don't use commercial components for cost saving !

All the space you need 16 March 2011 - 18

CONCLUSION - OVERALL EXPERIENCE (2)

The availability	Strength	Weakness
non-availability of high	 Electrical performances incomparable vs HI 	 Many products on the market LONG PRELIMINARY
performing and high reliability	REL components	SELECTION
EEE components		Unknown reliability and radiation behaviour
for the GAIA mission	Low mass and small packages	\Rightarrow BACKUP SOLUTIONS
imposed the	\Rightarrow SMALLEST &	REQUESTED
use of	LIGHTEST	\Rightarrow HARD AND RISKY
commercial	EQUIPMENTS	EVALUATION TO BE DONE
components.		\Rightarrow HIGH FINAL COST
		\Rightarrow SCHEDULE / DESIGN
This has been		IMPACTS WHEN EVAL.
positively		FAILS
proven on a few types.		 Components storage (Nitrogen)
a rew types.		Preliminary cost evaluation

All the space you need 16 March 2011 - 19

DON'T BE AFRAID TO USE COMMERCIAL EEE COMPONENTS IN CASE YOU NEED HIGH PERFORMANCES

BUT

DON'T BELIEVE YOU WILL SAVE MONEY BY USING COMMERCIAL EEE COMPONENTS

THANK YOU FOR YOUR ATTENTION

All the space you need 16 March 2011 - 20