

Specialised and Advanced Parts Procurement Services

EUROPEAN SPACE COMPONENTS CONFERENCE 17th March ESA, ESTEC, Noordwijk, The Netherlands

TOPICS

EEE Components for Space

- ≁ The market
- ✤ Challenges

Parts Procurement Concept.

Specialized & Advanced Parts Procurement

TOPICS

EEE Components for Space

- ≁ The market
- ✤ Challenges

Parts Procurement Concept.

Specialized and Advanced Parts Procurement

GLOBAL MARKET

Small Geo. Courtesy: ESA

Use of standard industry practices are being imposed.

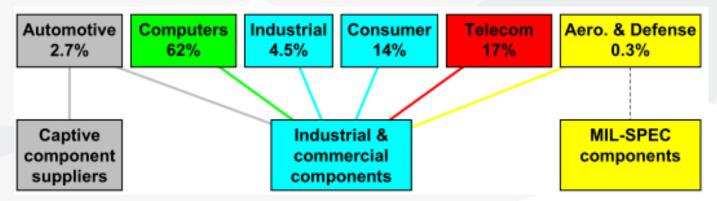
Recurrent equipment and projects.

New challenges and needs define a new and specialised approach. Driven by competition, pressure on prices reaches all links in the supply chain.

Customer demand push up on performance requirements.

ATV. Courtesy: ESA

HTV. Courtesy JAXA/NASA


Operators and scientific community are requiring higher performance systems.

Global market demands more services with lower prices while keeping or increasing overall reliability figures.

The use of state of the art technologies is needed.

In the past most of the EEE parts for Space were specifically produced with specific processes. It is not the case currently!

Space market is not a significant player in the global demand for EEE components.

NDIA Paper, Lloyd Condra, Convenor, IECQ-CMC Avionics Working Group. Year 2000 data.

CHALLENGES – TO OVERCOME

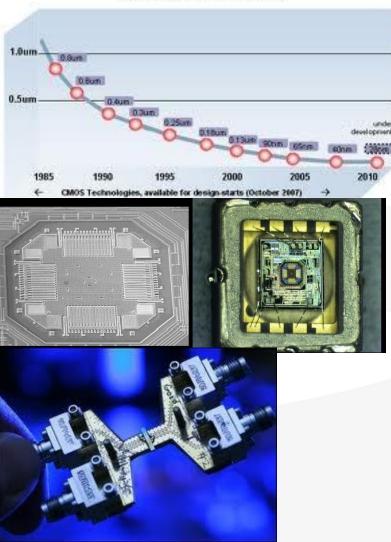
Product availability of high reliability parts is becoming an issue in space projects since.

Market requires shorter lead times.

✤ Space level products storage is not always economically feasible.

Export regulations prevent generation of strategic stocks.
State of the art technologies and functions are not qualified for space on time.

New projects separated from classical approach are demanding low cost practices.



CHALLENGES – TECHNOLOGIES

CMOS Technology Roadmap

Mass market demands impose continuous improvement in performance and cost.

Technology evolution and short life time cycles prevent long space evaluation and qualification flows.

Newer technologies may exhibit new failures mechanisms.

Some important families of products are not manufactured following space rules but are needed.

- **Optoelectronics**
- / MEMS
- ≁ Nanotechnology

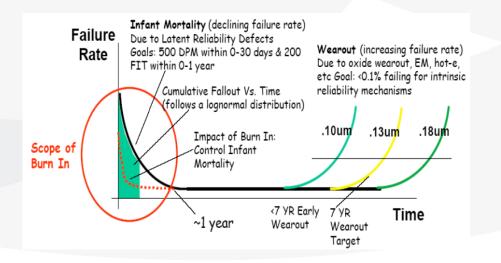
CHALLENGES – MANUFACTURERS

➡ EEE Parts manufacturers must be involved in space needs.

Investment on new parts and technologies are needed.

Growing opportunities in partnership with enhanced relationships.

Approaching space needs from a global point of view.

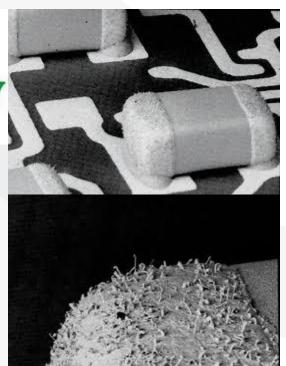

Proper communication channels must be established. Required for new technologies, not available at space level yet.

The use of COTS parts has inherent risks due to lack of experience and new concerns (RoHS, counterfeit, etc.).

CHALLENGES – COTS

➡ A key factor is the identification of reliability concerns based on space environment and needs.

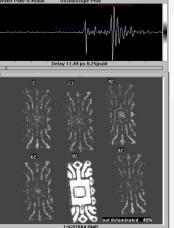
Deep technological knowledge and manufacturer involvement is required to evaluate the risk.

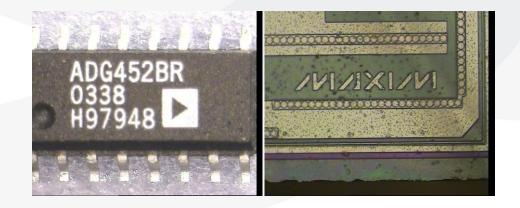

T E R

ENHANCES THE NEEDS OF A SPECIFIC APPROACH AND EXPERIENCE CUMMULATION

CHALLENGES – RoHS

- Mass production tries to adapt the most used approach avoiding singularities.
- RoHS provides a common playground for commercial productions but damages space needs.
- Not only COTS are concerned about RoHS.
- RoHS is not only tin whiskers.
 Long terms storage conditions for new terminations.
 - Modification of PCB population and manufacturing process.
- Assessment of different mitigation techniques are required.
 Conformal coating.
 Annealing.
 Others.


CHALLENGIES – COUNTERFEIT


The use of non qualified and specialized procurement channels may lead to increase the problems derived from counterfeits

Counterfeit problems are well known at industrial levels and increasingly affecting high reliability markets.

Proactive approach and detection techniques can save enormous amounts of time and money.

OTHER CHALLENGES

 Space industry must respond to concerns not previously addressed.

Risk management tools and proactive problem anticipation techniques are mandatory.

 Active monitoring and obsolescence mitigation techniques, allowing re-use of cumulated data are required.

The use of specialised channels provides a dedicated approach tailored for space needs.

Space environment presents unique concerns not addressed by mass market industry.

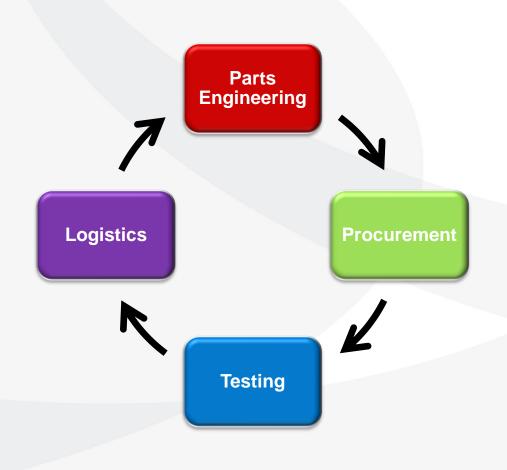
- ▲ Lead time. Definition of schedule critical item (SCI).
- A Lot validation failure. What happens if a SCI fails during lot validation?
- A Radiation performance. Can we wait until complete characterization?
- A Export restrictions. Jurisdiction modification during procurement.
- Production shortages. Can we anticipate problems?
- Inability to meet project quality requirements. Which are my alternatives?

EEE parts are in the critical path of the satellite manufacturing.

Failures on a simple component can lead to lose the complete mission.

TOPICS

EEE Components for Space


- 1. The market
- ✤ Background
- A Challenges

Parts Procurement Concept.

Specialized and Advanced Parts Procurement

PARTS PROCUREMENT

• EEE parts are the foundations of a satellite.

Parts Engineering and Testing is providing the right tools to the proper selection and subsequent use of EEE parts.

Parts procurement and testing companies / organizations are giving solutions to the problems derived from the new industrial environment.

EEE Parts product assurance, requirements understanding and specific services are key factors in the project success.

PARTS PROCUREMENT

PROCUREMENT AS A COMPLETE CYCLE ACTIVITY

Parts Engineering Parts and suppliers identification, definition and selection. obsolescence

DCL complete analysis Specific project analysis Identification of most appropriate scheme

Procurement ItAR Management

Selection of procurement scheme Active manufacturing monitoring Export licence control

Incoming Inspection Testing implementation DPA, RVT, SEE, Screening, etc

Preparation of testing plans and documentation Complete characterization and verification Lot validation (RVT, LVT, specific testing)

Logistics

Parts delivery Non conformance Management Kitting, storage, relifing,

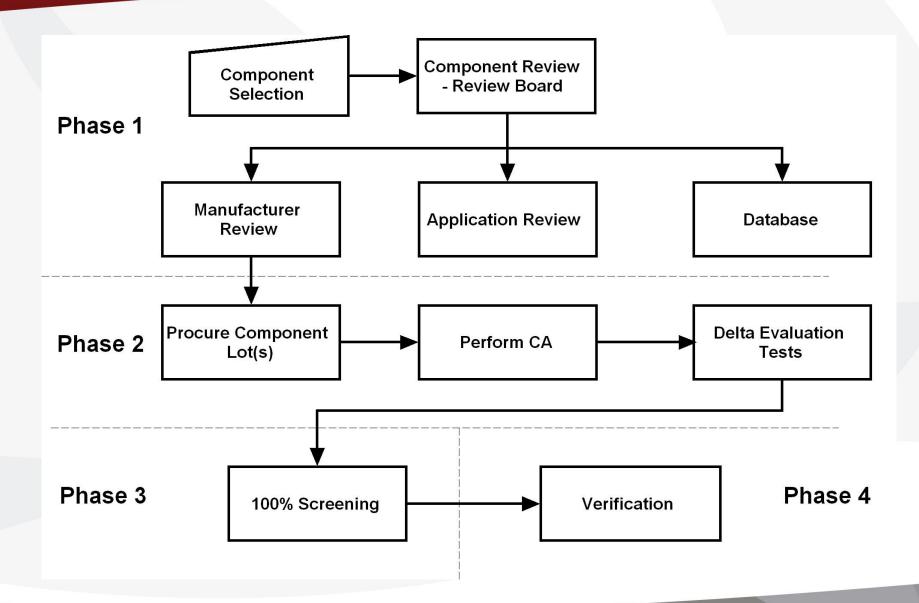
Long term storage Active mitigation management Specific logistic flow TECHNOLOGY GROUP

PRODUCT SELECTION

- Proper product selection requires access to key information and continuous monitoring.
- Integration of experience from other market segments.
- Appropriate reporting systems allows a right decision taking process.

	ica		DCT CNOLOGI		ייטר	Een		ogi	Ca		P		5
	Desc	onectar						1		7	Trab	aja en TLc	=
s	🕒 con	n area Catálo	go ConfUsr										
ogo		omponentes										Micro	circuit
		UE: Microcircuits			ore Info								
	914 Mato												
													_
	esh] <mark>10</mark>	Regs/Pag		[1] [2] [3] [4] [5] [More] 0f	of 192 VIEW ALERTAS								
 All	add None								OBS	PPL	RAD	QAD	тят
-	×	Component Number	Manufacturer	Part Type	Specification	Quality		AL	OBS	PPL	RAD	QAD	тѕт
		00	00	00	00	00							
R		5962-0150801QYC	Actel	RT54SX32S-CQ208B	<u>5962-01508</u>	QML Q			AX		*		
R		5962-0150802QXC	Actel	RT54SX32S-1CQ256B	<u>5962-01508</u>	QML Q			AX		*		
ಷ		5962-0150802QYC	Actel	RT54SX32S-1CQ208B	<u>5962-01508</u>	QML Q			A ×₽		*		
R		5962-0150803QXC	Actel	RT54SX32S-CQ256E (E-FLOW)	<u>5962-01508</u>	QML Q			A Y		*		
R		5962-0150803QYC	Actel	RT54SX32S-CQ208E (E-FLOW)	<u>5962-01508</u>	QML Q			AX		*		
R		5962-0150804QXC	Actel	RT54SX32S-1CQ256E (E-FLOW)	<u>5962-01508</u>	QML Q			A		*		
R		5962-0150804QYC	Actel	RT54SX32S-1CQ208E (E-FLOW)	5962-01508	QML Q			AX		*		
R		5962-0151501QXC	Actel	RT54SX72S-CQ256B	5962-01515	QML Q			A		*		
R		5962-0151501QYC	Actel	RT54SX72S-CQ208B	<u>5962-01515</u>	QML Q			A ×₹		*		
0		5962-0151502QXC	Actel	RT54SX72S-1CQ256B	5962-01515	QML Q			43		•		

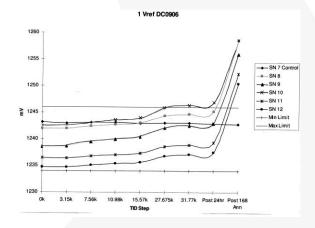
Alter EEE Parts Catalogue


- Detailed controls and risk mitigation analysis and plans must include actions for.
 - ✤ Obsolescence
 - ▲ Alerts monitoring
 - ✤ Export control needs
 - 1 Long lead and critical schedule items
 - Manufacturers and products evaluation
 - ✤ Counterfeit detection

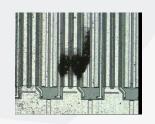
PRODUCT SELECTION

	DCT CNOLC		General Data			Qualification Status	Application	Mechanical Data	Fu	nctional	& Electrical		ALS	OB	A	PPL	RAD
Web Project Office Log Our Add to Favourites	Component Number	Manufacturer	Part Type	Specification	Quality	Qualified Part	Rad. Level	Package	Finish	Capacity	Organization	n Access Time	AL	RISK OB	S LTB	PPL PPL E E P1 P2	RAL
P™ Catalogue	80	00	00	00	80	80	80	\$\$	60	80	00	00					
Capacitors	5962H9861501VXC	BAE Systems	LM1M8C3VRH-V30X	5962-98615	QML V	Y	1000Krad(Si)	FP-40	Gold Plate	114	128K x 8	30ns					
Crystals	5962H9861502VXC	BAE Systems	LM1M8C3VRH-V35X	5962-98615	QMLV	Y	1000Krad(Si)	FP-40	Gold Plate	11	128K x 8	35ns					-
Filters	5962R0250101VXC	Atmel	SMDJ-65609EV-40SR	5962-02601	QML V	Y	100Krad(Si)	FP-32	Gold Plate	1M	128K x 8	40ns				1	•
Heaters	930104702	Atmel	DJ-65608EV-45	9301/047	ESCC	N	Not Available	FP-32		1M	128K x 8	45ns					•
Microcircuits	930104704	<u>Atmel</u>	DJ-65608EV-30	9301/047	ESCC	N	Not Available	FP-32		114	128K x 8	30ns				v	•
Resistors Relays	HLX6228TSF	Honeywell	HLX6228TSF	HLX6228 HON DS	JAN S EQ	N	300Krad(Si)	FP-32	Not Available	1M	128K x 8	32ns					
Switches ™∰Thermistors	HLX6228TSH	Honeywell	HLX6228TSH	HLX8228 HON DS	JAN S EQ	N	1000Krad(Si)	FP-32	Not Available	1M	128K x 8	32ns					
Transformers	HLX6228TSN	Honeywell	HLX6228TSN	HLX8228 HON DS	JAN SEQ	N	No Guaranteed	FP-32	Not Available	1M	128K x 8	32ns					
	HLX6228TSR	Honeywell	HLX6228TSR	HLX8228 HON DS	JAN S.EQ	N	100Krad(Si)	FP-32	Not Available	114	128K x 8	32ns					1
FT Ittilitias X	HX6228ASEC	Honeywell	HX6228ASFC	HX8228 HON DS	JAN S EQ	N	300Krad(Si)	FP-40	Not Available	1.1	128K x 8	16ns					•
BASIC SEARCH		0.005555000255		М	icrocircuit	inear High-Sp	eed, Fast-Settlin	a Precision	Operational A	mplifier M	Ionolithic Silice	n			_		
Quality System / Level	All 🔍 / All		- ?					51									
Manufacturer	Detailed Specification			ę	응 SPECI	FICATIONS	SUMMARY										
All	Click here to set Detailed S	k here to set Detailed Specification			Generic Specification MIL-PRF-38535					▶Issue H ▶Rev -							
Analog Devices	Style	de			Detailed Specification 5962-88513				▶ Issue F ▶ Rev -								
Datel (Adquired b E2V Semiconductors	style				Applicable (VIEW)												
Honeywell 🔻	Click here to set Style			Ľ	Document	S											
Multiselect 'Ctrl + Click'. Max Selec	tion: 3 Mnfrs.						-										
				ŧ	응 APPRC	VAL STATU	5										
- DIRECT SEARCH				Þ	Qualified	Part:	Y → Certific	ate Numbe	r:	QPDS	SIS-38535 13-	Oct-2010			Valid	Until:	
 Component Number Part Type 	Exact		Note: Advanced para	metric and additio													
Part Type					🕀 St	ock	🕀 Export	Licenses									
_ ADVANCED PARAMETRIC SEARCH	2				+ PPL		Radiation:	5	유 QA Docum	ients	🕀 Tests			Previous	Use		
					H Charac	teristics 🗧	Alternatives		Eng. Models		8 Alerts		(# C)bsolescen	e .		
- Qualification Status	All 👻		ication														
Qualified Part =	▼ AII ▼	Rad. L	evel >= 🗸 All			ication Statu	5				oplication						
🖵 Mechanical Data			tional & Electrical		Qualifie	a Part	Ŷ			Rad	I. Level		No	t Available			
Package = 💌 All	-	Numbe Channel		II 💌	— Mecha	inical Data				- Fu	inctional & E	Electrical					
▶ Package Class = 💌 All				II 🖵	Package CAN-8				Finish Hot Solder Dip								
		Sample	e Rate								dwidth nber of Am	lifiere		MHz DNO			
			Apply								n (Minimum			4dB			
		Finish	= 💌											-			

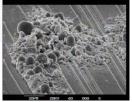
NON SPACE LEVEL PARTS



SPECIFIC SCREENING


- Parts neither designed nor manufactured to consider space environments.
- Specific knowledge on the space environment and characteristics are required in order to generate proper testing scheme and results validation.
- Radiation characterization versus radiation testing.
- Specific analysis per component, radiation effects and application.
- Accelerated testing is a valid tool to obtain confidence.
- Many factors involved in the analysis of the results.
- Not skilled analysis may lead to inconclusive results.

ELDRS – Results for a COTS Low Voltage (1.24V) Adjustable Precision Shunt Regulator



Die Surface

Failure Site

SPECIFIC SOLUTIONS

	SOLUTION									
PROBLEM	COTS (Evaluation + Upscreening)	ECI programme	ASICS development	OTHER						
Availability of Space Qualified Parts is reduced and decreasing	Х	Х	X*							
ITAR/ European dependence	Х	Х	X*							
OBSOLESCENCE/ Technology life-cycle	Х	Х	X*	Obsolescence management programmes						
COMPETENCE •Power reduction needs •Mass reduction needs •Performance increase needs.	Х	Х	XX*							
* Depending on the function										
Mixed signal ASICs can be an alternative solution to procurement issues.										

TOPICS

EEE Components for Space

- 1 The market
- ✤ Background
- A Challenges

Parts Procurement Concept.

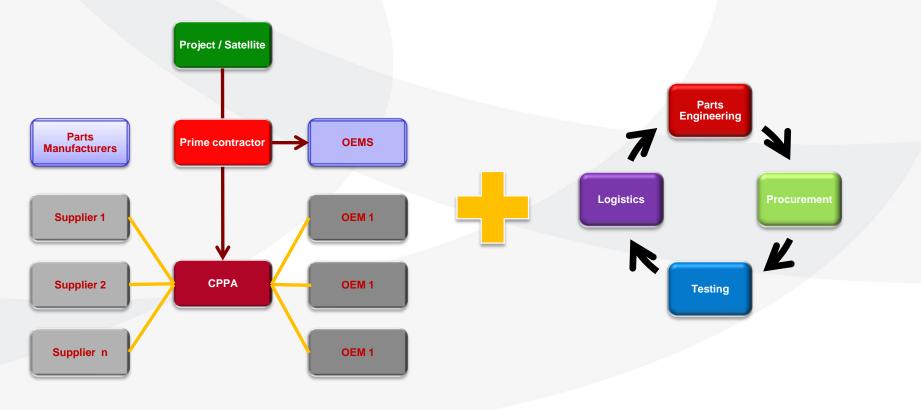
Specialized and Advanced Parts Procurement

To face these challenges, procurement will move towards to:

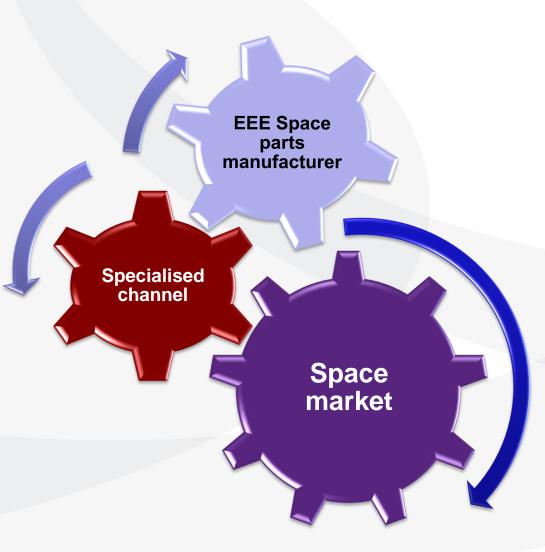
- + technical approach (deeper knowledge on parts)
 - topics to control (life cycles, technology changes, terminations)
 - integrated (design, engineering, logistics, manufacturing)

SPECIALISATION

Different approach based on organization type and project.



SPECIALIZED APPROACH


CoPPA concept is evolved to a specialized approach.

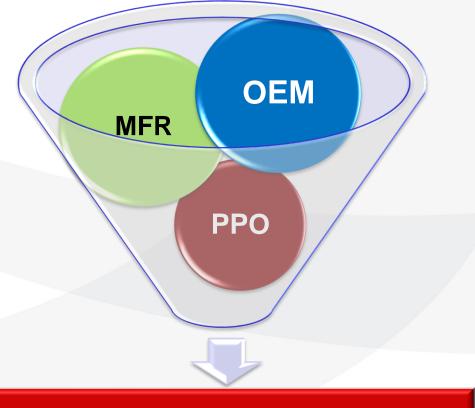
Classical advantages are kept while increasing the level of service and support to new activities.

SPECIALIZED APPROACH

Simplification of supply chain increases visibility of space level manufacturers.

Extensive use of specialised channels provides more efficient bi-directional information flow, ensuring the right feedback is provided.

 Orientation on global market demands helps to focus developments allowing required return on investments and coverage of key functions.


SPECIALIZED APPROACH

Each actor is focused in their core activity.

Results are optimized combining resources and common needs (i.e. advanced testing requirements).

Knowledge accumulation accessible to all actors.

Parts procurement organizations (PPO) are the evolution towards a specialized approach.

RESOURCES OPTIMIZATION

THANK YOU FOR YOUR ATTENTION

www.altertechnology.com