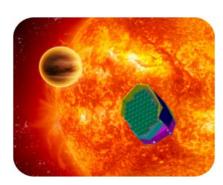
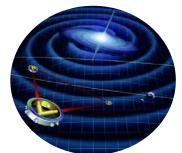


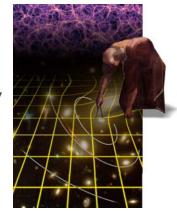
ESA Science Missions: Plans of the Cosmic Vision Programme

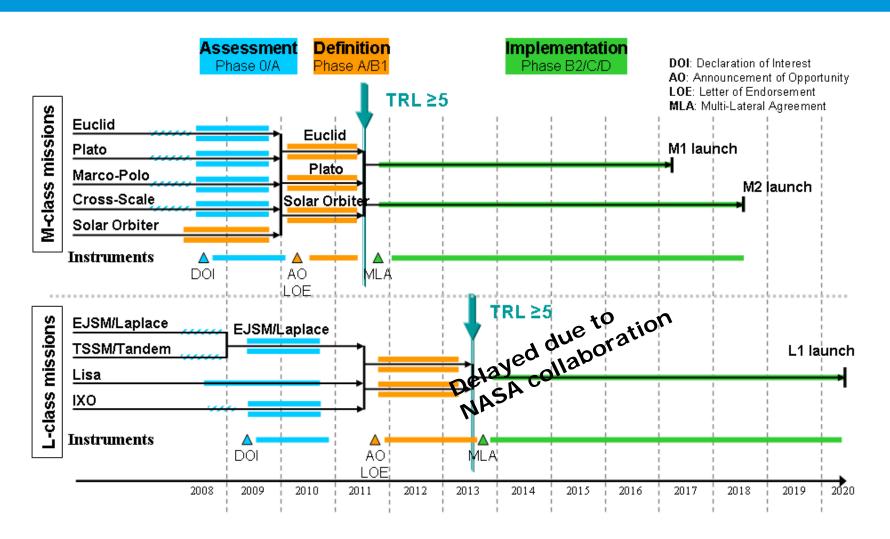

C. Erd ESTEC 15/03/2011


Cosmic Vision vace Science for Europe 2015-2025

Cosmic Vision Process




- 1. Plan covers 10 years, starting from 1st launch in 2017
- 2. It is divided in 3 "slices" with a ~1 B€ budget each (2010 EC)
- 3. It foresees a "Call for Mission proposals" for each of the 3 slices
- 4. First "Call for Missions" was issued in 1st Q 2007
- 5. 50 proposals received by June 2007 deadline (2x than H2000+)
- 6. Selection by advisory structure on behalf of scientific community during summer & fall of 2007 → Assessment study (1 year)



European Space Agency

Cosmic Vision Preliminary Planning

Cosmic Vision Slice #2: M3 Mission

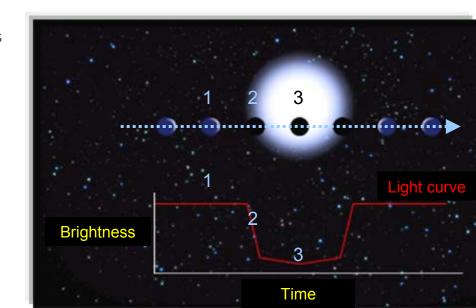
- 1. Call for M3 Mission (≤ 470 M€) proposals released on 29 July 2010:
 - a. 3 December 2010: Proposal deadline (47 proposals)
 - b. Dec 2010 Feb 2011: Proposal evaluation by AWG \rightarrow SSAC
 - c. Feb 2011: selection of 4 M3 missions for Assessment
 - Exoplanet Characterisation Observatory (EChO)
 - Large Observatory For X-ray Timing (LOFT)
 - MarcoPolo-R
 - Space-Time Explorer and Quantum Equivalence Principle
 Space Test (STE-QUEST)
- 2. Selection of 2 M3 missions for Definition study (phase A/B1) end 2012
- 3. Selection of 1 M3 mission for implementation End 2015
 - a. M1/2 mission candidate which was not selected may compete for M3
- 4. Launch of M3 mission in 2022

The Medium "M" Mission Candidates

Plato MarcoPolo-R

Euclid ECHO

SOLO LOFT

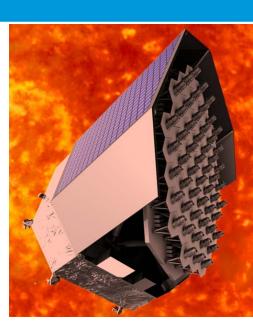

STE-QUEST

M1/2: PLATO overview

Science objectives:

- 1. Discover and characterise a large number of close-by transiting exo-planetary systems.
- 2. Perform **seismic analysis** for the exo-planet host stars (stellar evolution and interior processes).
- 3. Obtain mass, radius, age,... of stars and planets with a precision in the determination of mass and radius of 1%.
- 4. Observation strategy
 - Observe many stars (>20 000); detect ~40 exo-planets
 - With **low noise** level (27ppm)
 - For **2-3 years continuously** to observe multiple transits
 - Observe bright stars ($m_V=4-11$)
 - Maximize number of observed **bright stars** enabling required ground based follow up observations
 - Maximize Field of View by using overlapping Lines of Sight

M1/2 PLATO mission



Mission description:

- 1. Launch by end 2018 from Kourou, French Guyana
- 2. Soyuz 2-1b with Fregat-MT upper stage
- 3. Operational orbit: large-amplitude around L2
- 4. Mission life time is 6 years; all subsystems sized for 8 years in L2
- 5. Components Technology Readiness Level ≥ 5 before July 2011
- 6. Max launch mass: 2190 kg with adapter
- Power ~ 1.7 kW.

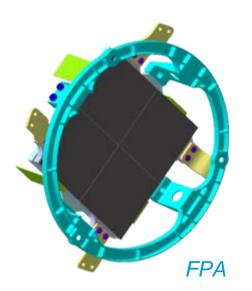
- a. Maximise both fov (2000 deg²) and collecting area.
- o. 32+2 cameras (32 in full-frame and 2 in frame-transfer mode; 1+1 operating in loop with ACS).
 - 6 lenses/telescope (1 aspheric); radiation resistant
 - 120mm entrance pupil
 - mounted individually on optical bench
 - individual baffles for stray-light rejection and thermal dissipation
- a. 4 CCD/camera, each CCD (4510×4510 pix, 18 μm).
- b. Spectral range: 500 1000nm
- c. Telescope nominal working temperature: -80degC

M1/2 PLATO technology

Technology development areas

- 1. No development for S/C required
- 2. Payload: Development of optimised CCD for PLATO

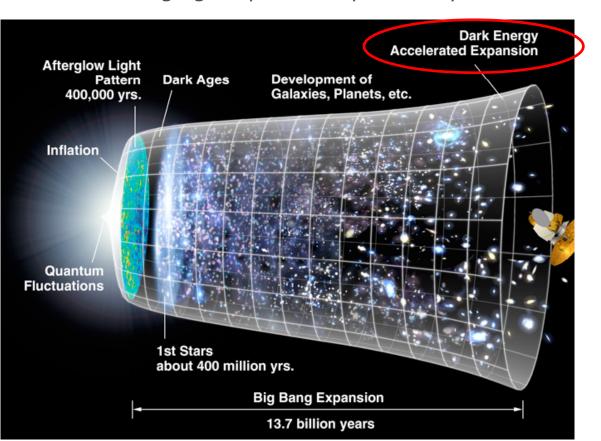
Phase 1: 20 July 2010 - 20 June 2011

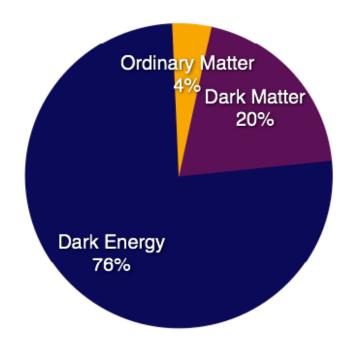

Minimum requirements for activity until June 2011 in view of CV M-class mission down selection:

- CCD design, packaging design, flexi-cable design
- Silicon batches production (5 batches in total)
- Identification of design improvements w.r.t. GAIA to give confidence on production yield extrapolation
- Initial characterization of CCDs on wafers

Phase 2: 21 June 2011 - Feb. 2012

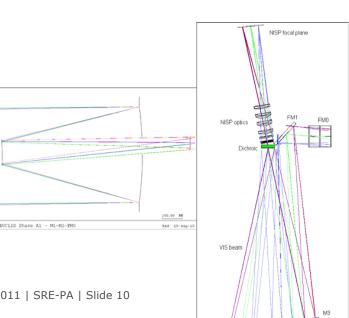
Finalization of development until Feb. 2012, tasks including:

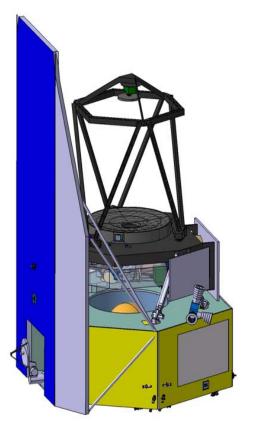

- Back thinning of devices
- CCD packaging
- Testing of the packaged devices
- Plan for flight model mass production



M1/2: EUCLID science

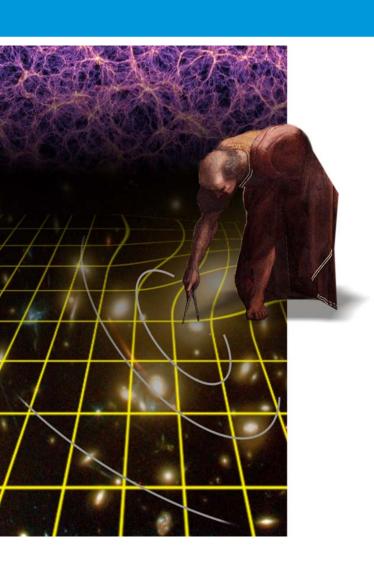
- 1. To constrain Dark Energy equation of state parameter w to <1% and its evolution w(z) to <10%
- 2. Uses 2 probes: Weak Lensing & Baryonic Acoustic Oscillations
- 3. Imaging & spectroscopic survey of entire extragalactic sky




M1/2: EUCLID mission

The EUCLID payload consists of:

- a 1.2 m diameter telescope,
- a visible imager (VIS),
- a near-IR instrument (NISP)


European Space Agency

CV Overview | C. Erd | ESTEC | 15/03/2011 | SRE-PA | Slide 10 $\,$

ESA UNCLASSIFIED - For Official Use

M1/2: EUCLID technology

Technology activities & predevelopments

- CCD pre-development proceeding
- NIR detector development in Europe pursued as a back-up for Euclid
- Dichroic development

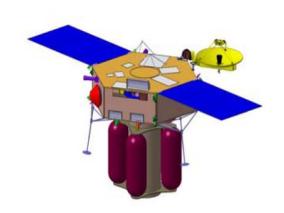
M1/2: Solar Orbiter overview

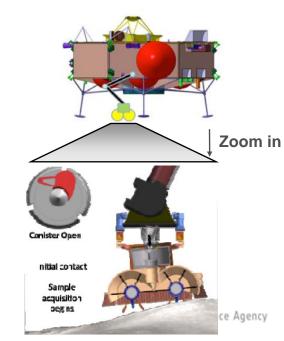
- To produce images of the Sun at an unprecedented resolution and perform closest ever in-situ measurements
- Determine in-situ the properties and dynamics of plasma, fields and particles in the near-Sun heliosphere
- 3. Survey the fine detail of the Sun's magnetised atmosphere
- 4. Identify the links between activity on the Sun's surface and the resulting evolution of the corona and inner heliosphere, using solar co-rotation passes
- 5. Observe and characterise the Sun's polar regions and equatorial corona from high latitudes
- 6. Visible, extreme ultra violet, X-rays
- 7. Elliptical orbit around the Sun with perihelion as low as 0.28 AU and with increasing inclination up to more than 30° with respect to the solar equator.
- 8. 6 years lifetime (nominal)

M1/2: Solar Orbiter technology

- Solar generator for High-Intensity-High-Temperature
- 2. High temperature materials selection/verifications
- 3. Heat rejecting entrance window

M3: MarcoPolo-R

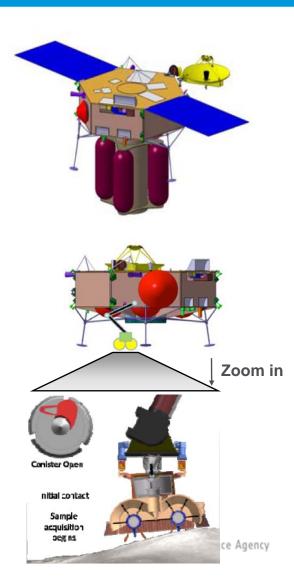



1. Main science objectives:

- a. Earth-based analysis of samples returned from a primitive asteroid (1996 FG 3, binary)
- In-situ characterization of the asteroid

2. Mission profile:

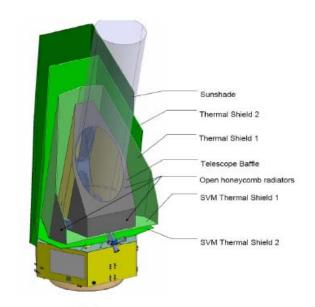
- a. Launch with SF-2B via GTO in 2021 (backup in 2022), Transfer $\Delta v = 2.8$ km/s.
- b. Stay time at the asteroid: 8-10 months.
- c. Short asteroid landing (few seconds touch and go) using very fast sampling system.
- d. Distances to the Sun ~ 0.7 AU = Hot environment
- e. Return to Earth in 2029. Earth re-entry velocity: 13.6 km/s

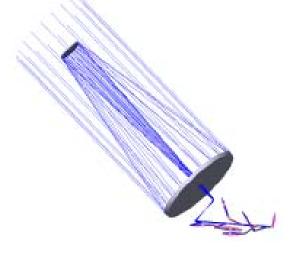


M3: MarcoPolo-R

1. Payload:

- a. Baseline: wide-angle & narrow-angle & close-up camera (in-situ images of the sampling location), visible/near-IR & mid-IR spectrometer, neutral particle analyzer, radio science, total mass: 20 kg
- Optional: laser altimeter, lander package (camera, LIBS, vis/IR microscope, radar)
- 2. Technology development area:
 - Landing/touchdown system (if relevant, depending on selected sampling approach)
 - Further development of GNC sensors and algorithms
 - c. Sample Mechanism
 - d. TPS for re-entry

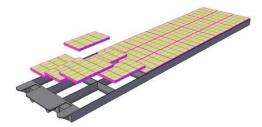



CV Overview | C. Erd | ESTEC | 15/03/2011 | SRE-PA | Slide 15

M3: ECHO

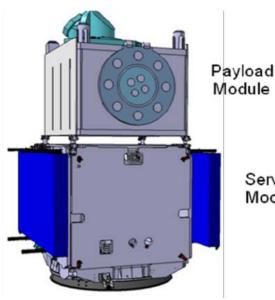
- 1. Characterisation of already detected exo-planets (50-100 targets) via spectroscopic measurements.
- 2. SF2-1B launch to SE-L2. Lifetime = 5 yr.
- 3. SVM + PLM. Total mass \sim 2 ton, power \sim 1.5 kW.
- 4. Instruments (0.4 16 μm):
 - a. 1.5 m diameter telescope.
 - Optical bench and telescope T < 45K (passive cooling).
 - c. 1 Vis (science + guidance) + 5 IR channels (HgCdTe) split by dichroic mirrors.
 - d. RPE < 20 mas / 10 hr (VIS channel in ACS loop).</p>
- 5. Technology development areas:
 - a. To be defined during assessment study.
 - b. Likely to involve MIR detectors.





M3: LOFT

- 1. High-time-resolution X-ray observations (2-30 keV) of rapidly varying objects.
- 2. VEGA launch to equatorial LEO. Lifetime = 4 yr.
- 3. SVM + PLM. Total mass \sim 2 ton, power \sim 2 kW.
- 4. Instruments:
 - a. Wide Field Monitor (triggering observations).
 - Large Area Detector (capillary collimator + SDD).
 - c. 6 deployable panels, total of 10m²: 16 detector/module, 21 module/panel -> total of 2016 detector units.
 - d. Deployable panel mechanism (SMOS/SAR heritage)
- 5. Technology development areas:
 - a. To be defined during assessment study.
 - Likely to involve delta detector and capillary collimator developments.



M3: STE-QUEST

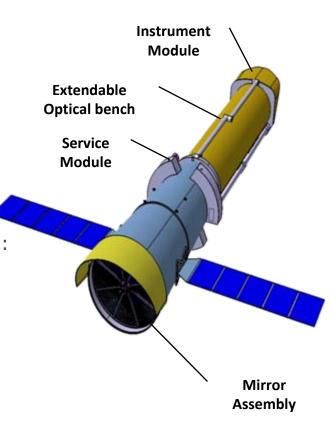
- 1. General relativity confirmation. STE= gravitational red shift. QUEST= equivalence principle.
- 2. SF2-1B launch to highly inclined HEO. Lifetime = 5 yr.
- 3. SVM + PLM. Total mass $\sim 1-1.5$ ton, power ~ 2 kW.
- 4. Instruments:
 - Improved cold atom MW clock (upgraded PHARAO/ACES).
 - Atom Interferometer (EP verification).
 - Precise orbit determination (GNSS receiver + corner cube reflectors)
- 5. Technology development areas:
 - To be defined during assessment study.
 - Likely to involve delta work on upgraded PHARAO.
 - Atom Interferometer: significant work required in order to achieve TRL=5 by end of 2014.

STE Satellite

Service Module

The Large "L" Mission Candidates

IXO

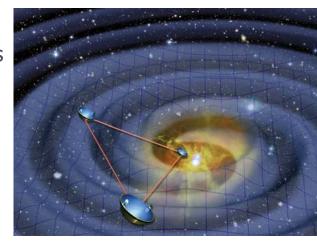

LISA

Laplace/EJSM

L1: IXO overview

- 1. A single large aperture X-ray telescope (MA), using:
 - a. either the Si pore optics technology.
 - b. or the slumped glass technology.
- Focal length (20 m) achieved via deployable booms (EOB).
- 3. X-ray Grating Spectrometer always illuminated (IM).
- 4. Five focal plane instruments on a moving platform (IM):
 - a. Wide Field Imager (WFI)
 - b. Hard X-ray Camera (HXI)
 - c. X-ray Imaging Spectrometer (XMS)
 - d. High Time Resolution Spectrometer (HTRS)
 - e. X-ray Polarimeter (XPOL)
- 5. Observatory operating at SEL2 (on a large Halo orbit).

L1: IXO technology


1. IXO platform:

- Needs (and risk) mitigated through optimisation of the international cooperation scheme (e.g. NASA deployable bench with flight heritage).
- b. Metrology and mechanisms
- 2. IXO focal plane instruments:
 - a. Nationally funded development activities are ongoing for all instruments.
 - b. ESA team is monitoring closely progress through consortia studies.
- IXO optics (mission enabling element):
 - a. ESA strong commitment to next generation X-ray optics.
 - ESA funded activities addressing both Silicon Pore Optics (baseline) and slumped glass approach (back-up). See next presentations for details.
 - c. Independent activity (focused on slumped glass) is sponsored by NASA.
 - d. Parallel activities on different technologies allow to further mitigate the risk.

L1: LISA science


- 1. Observe BH formation & SMBH (M \sim 105 ... 108 Mo) mergers out to z > 10 with high (>300) SNR
- 2. To observe capture of stellar-mass compact objects (BH,NS,WD) into SMBH ("EMRI")
- 3. Map space-time geometry near BH & test GR in strong field regime, including "no hair" theorem
- 4. To observe thousands of compact binaries & map their distribution across the galaxy
- Measure Luminosity distances to 0.5 % accuracy → accurate cosmology

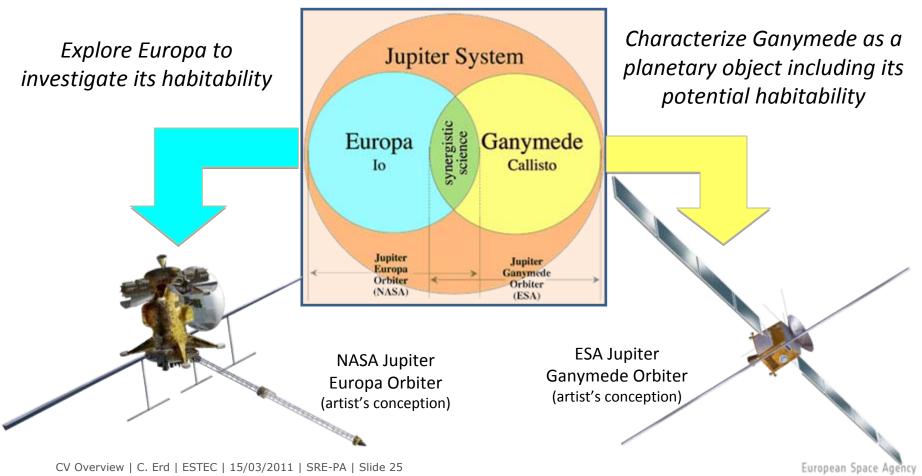
L1: LISA mission

- 1. Cluster of 3 spacecraft in a heliocentric orbit
- 2. Trailing the Earth by 20° (50 million kilometres)
- 3. Equilateral triangle with 5 million kilometres arm length
 - a. Measure arm-lengths variations by laser interferometry
 - b. Precision of relative variation measurements < 0.1 pm
- Spacecraft shield the test masses from external nongravitational forces (solar wind, radiation pressure) → TM follow pure geodesic
- Allows measurement of <u>amplitude</u> and <u>polarisation</u> of GW

CV Overview | C. Erd | ESTEC | 15/03/2011 | SRE-PA | Slide 23

ESA UNCLASSIFIED - For Official Use

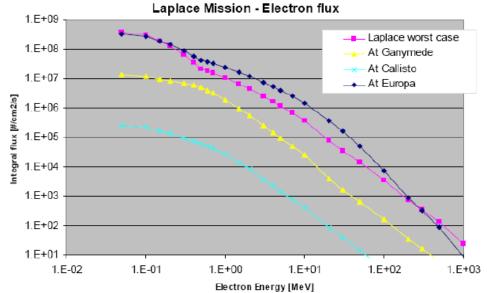
L1: LISA technology

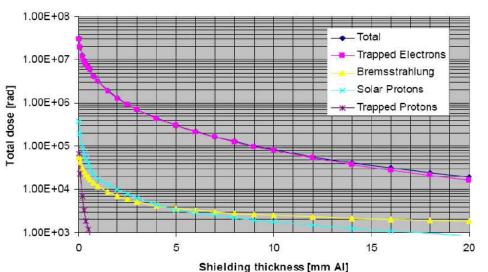

- 1. Optical assembly articulation mechanism
- 2. Metrology system
- 3. High power laser system
- 4. Tuneable laser frequency reference
- 5. Inertial sensor design
- 6. Charge management system
- 7. Low noise magnetic gradiometer
- 8. Micropropulsion lifetime

L1: LAPLACE/EJSM science

Explore the Jupiter system as an archetype for gas giants.

L1: LAPLACE/EJSM mission




- 1. NASA and ESA: Shared mission leadership
- 2. Independently launched and operated flight systems with complementary payloads
 - a. NASA-led Jupiter Europa Orbiter (JEO)
 - b. ESA-led Jupiter Ganymede Orbiter (JGO)
- 3. Complementary science and payloads
 - a. JEO concentrates on Europa and Io
 - JGO concentrates on Ganymede and Callisto
 - c. Both perform Jupiter System Science
 - d. Synergistic overlap
 - e. ~11 instruments on each flight system

L1: LAPLACE/EJSM radiation environment

- Radiation is electron dominated
- 2. High energies less efficient shielding

L1: LAPLACE/EJSM technology

- 1. Solar cells for Low-Temperature-Low-Intensity conditions
- 2. Radiation tolerant materials (high surface charges, cold)
- Radiation tolerant components: FLASH, memory, LEON, power converters
- 4. Latch-up protection for COTS
- 5. Front-end readout ASIC (radiation tolerance, different frequency domains)
- 6. DARE+ continuation of development
- 7. Low mass Space Wire
- 8. Radiation tolerance of opto-couplers, sensors, detectors
- 9. Star tracker performance on high radiation environment

Technologies for several missions

- 1. Strategic developments possibly applicable to several missions
- 2. Developments related to components (selected list):
 - a. High processing power DPU based on high rel. DSP
 - An On-Board Software Platform for the Next Generation of Infrared Astronomy Missions
 - c. High Efficiency Horn Antennas for Cosmic Microwave Background Experiments and Far- Infrared Astronomy
 - d. Development of a THz Local Oscillator for Space Science Heterodyne Applications

Conclusions

- M-class missions are constrained by schedule and allow only limited developments
- 2. L-class missions additional limited developments accepted
 - a. LISA: lasers, drag-free, metrology
 - b. IXO: optics, focal plane, metrology
 - c. EJSM/Laplace: electronics, materials
- 3. L-class missions now under review due to recent developments on US decadal surveys outcome and due to NASA budget, specifically
 - a. EJSM/Laplace
 - b. IXO
 - c. LISA