

P-channel Power MOSFET SEGR Sensitivity to Heavy Ion Range

Nathalie Chatry, Nicolas Sukhaseum, Maryse Sauvagnac, Françoise Bezerra, Robert Ecoffet and Rémi Gaillard senior member IEEE

CNES/ESA final presentation days 2011

- Introduction
- Part selection and preparation
- Tests description and results
- Correlations of SEGR sensitivity with experimental parameters
 - LET @ surface
 - Deposited charge in the entire die
 - Deposited charge in epitaxial layer
- Worst-case heavy ion characteristics / Test method
- Conclusions and perspectives

Introduction

- An abundant literature exists & the impact of different parameters are identified
 - normally incident beam
 - flux and fluence of heavy ion beam
 - test temperature
 - voltage bias during irradiation: VDS et VGS
 - gate oxide thickness

SEGR sensitivity and combined impact of :

- the surface linear energy transfer (LET),
- ion species, ion energy and penetration depth,
- power MOSFET process and EPI layer thickness.

A question remains non totally solved

What are the worst-case test conditions for SEE testing of Power MOSFETs ?

 P-channel COTS power MOSFET from various manufacturers, with different technology and EPI layer thicknesses.

Reference	Manufacturer	Channel	VDS (V)	VGS (V)	Package
Type 1	Vendor A	P HEXFET	-100	+/-20	TO3
Type 2	Vendor B	P HEXFET	-200	+/-20	TO3
Type 2	Vendor A	P HEXFET	-200	+/-20	TO3
Type 4	Vendor C	P DMOS	-200	+/-30	TO220

5

March 28th 2011

Cross sectioning

Epitaxial layers depths and thicknesses

Туре	Manufacturer	VDS(max) (V)	Passivation (µm)	Epitaxial Depth (µm)	Epitaxial Thickness (µm)	Die thickness (µm)
Type 2	Vendor B	200	5.5	35.5	30	400
Type 2	Vendor A	200	8.95	37.95	29	400
Type 1	Vendor A	100	5.8	17.8	12	400
Type 4	Vendor C	200	6.2	27.2	21	280

- 2 test campaigns at the UCL (Belgium)
 - * Xe, Kr (high range and high LET cocktails)
- 3 test campaigns at the GANIL (France)
 - Xe, Kr
 - Irradiations performed in air.
 - surface LET and range adjusted by tuning the air thickness and the aluminium degrader thickness between beam output and DUT.
 - parts irradiated with different charge deposition across the sensitive layer

March 28th 2011

Tests description

Q1

- Tests Conditions
 - Constant flux : 10³ #.cm⁻²·s⁻¹
 - Constant fluence : 3.10⁵ #.cm⁻²
- SEGR if Igs> 100nA
- New part at each run
- VGS voltage is fixed
- VDS threshold determination for different Ranges

VGS

R1

270

R2

C1 820pF

- « VDSpass » confirmed on 2 parts
- PIGS if no SEGR during irradiation

VDS

C3

4.7µF

C2

220nF

Type 2 Vendor A (200V), VDS thresholds @ VGS=16V (80% VGS max)

CNES/ESA final presentation days 2011

Type 1 Vendor A (100V), VDS thresholds @ VGS=8V (40% VGS max)

Type 4 Vendor C (200V), VDS thresholds @ VGS=18V (60% VGS max)

March 28th 2011

• All the results confirm

- the existence of a worst case range corresponding to the worst SEGR part sensitivity.
 - neither obtained with the short-range ion
 - nor with the long-range ion.
- The worst-case range is an intermediate value close to the depth of the epitaxial layer.
- the worst case range depends on the ion species, that is to say the surface LET value.

- surface LET is not a sufficient criteria to estimate the sensitivity.
 - it remains as an important parameter to take into account when choosing an ion type for a test

Deposited charge in the entire die

VDS fail threshold versus deposited charge in the entire die for Xe (GANIL)

Type 1 Vendor A

Type 2 from Vendor B

- Bragg peak located near the interface of the epitaxial and substrate layers
- the shape of the charge deposition seems to be an important parameter.
 - A constant charge deposition along the ion track associated to relatively high surface LET leads to the worst VDS threshold

- High surface LET
- A constant charge deposition along the ion track in the epitaxial layer
- Complete penetration of the epitaxial layer and Bragg peak near the interface of the epitaxial and substrate layers
- Maximum charge deposition in the epitaxial layer

SEGR test method

- (1) Part sectioning to measure the layer thicknesses
- (2) Possible beam characteristics: list the available ion characteristics (species and energy)
- (3) Test preliminary calculations : surface LET, mean LET in sensitive area, range and deposited charge in EPI layer calculations
- (4) Estimated worst-case beam determination:
 - the worst-case configuration is the one that maximizes the deposited charge in the EPI layer
 - High surface LET
 - A constant charge deposition along the ion track in the epitaxial layer
 - Complete penetration of the epitaxial layer and Bragg peak near the interface of the epitaxial and substrate layers

Conclusions & Perspectives

- Conclusions
 - The objective : to analyze the impact of the parameters involved in SEGR ٠ sensitivity on different COTS MOSFET
 - surface LET value as total deposited charge in the entire die \rightarrow not sufficient criteria to estimate the sensitivity
 - The deposited charge in EPI layer \rightarrow the most meaningful criteria.
 - The range of the particle needs to be long enough to completely cross the **EPI** layer.
 - Bragg peak located near the interface of the epitaxial and substrate layers •
- **Perspectives**
 - similar study on N channel power MOSFETs, to extend our observations to SEGR / SEB combined phenomena.
 - SEGR rate calculation improvement, taking into account the deposited charge into the epitaxial layer instead of the surface LET.

