

## **Reverse Monte Carlo** tools in FASTRAD<sup>®</sup>

P. POURROUQUET, J.C. THOMAS, P.F. PEYRARD (TRAD, Labège, France) R. ECOFFET, G. ROLLAND (CNES, Toulouse, France)

http://www.fastrad.net



**CNES/ESA** final presentation days 2011



### The FASTRAD software

- Radiation CAD Interface
- Dose Calculation
- Post-Processing Analysis

### The Monte Carlo module

- Direct Method
- Reverse Method

### Results and validations



## **The FASTRAD Software**



March 28<sup>th</sup> 2011

3



#### Import / Export CAD capability

- STEP/IGES format (CAD tools standard),
- STEP SPE format (space CAD model)

#### Geometry modeler

- Complete and intuitive geometry toolkit,
- Shape reconstruction
- Data input for 3<sup>rd</sup> party calculation tools
  - GEANT4 (CERN)
  - NOVICE (EMPC)





#### 2 complementary calculation modules

- Ray-tracing,
- Monte Carlo Algorithm.

#### Ray-tracing

- A well-known method for fast dose calculation (sector analysis),
- But problems may appear with:
  - very dense or very light materials,
  - electrons (light charged particles).

#### Monte Carlo

- Partnership with CNES since 2005,
- Better results accuracy thanks to a more realistic transport,
- Details of this method in a few slides...



#### Ray-tracing Visualisation

- Ray visualisation according to the mass shielding distribution,
- Shielding impact on dose deposition.

#### Shielding assistant

- Point at the design weaknesses,
- Helpful to place additional shielding for critical parts.



**CNES** courtesy



## **The Monte Carlo module**



March 28<sup>th</sup> 2011

7



#### MC algorithms for electrons and photons

- Energy range (1 keV 10 MeV)
- On-going electron validation up to 1GeV

#### Physical processes taken into account

- Multiple scattering,
- Ionisation,
- Bremsstrahlung photon creation,
- Photoelectric effect,
- Compton diffusion,
- Materialisation.



#### Realistic Particle transport

- From source to model limits or total energy loss,
- Secondary particle tracking (electrons and photons).

#### Large variety of available sources

- External isotropic environment (space environment),
- Circular beam (irradiation test or medical devices),
- Isotropic emission from the surface of a volume (nuclear).

#### Calculation Results in Sensitive Volumes (SV)

- Energy and dose deposition,
- Fluence of transmitted particles.

#### Drawback for space calculation

 Huge computational time when the size of the Sensitive Volume is much smaller than the model size => need for a biasing method : the <u>Reverse</u> <u>Monte Carlo</u>





#### Trajectory visualisation

- Trajectory view of all particles tracked during the simulation
- Information on each particle step

| Messenger 🛛 🔀 |                                                                                                                                                            |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1             | Change of centre : line (395240)<br>secondary photon (level 2)<br>position : -93.67339, 73.79334, 30.69639<br>Ek = 90.25976 keV<br>Edep = 0 eV<br>ALUMINUM |  |  |  |
|               | Direct MC<br>point N°5<br>distance from the previous point = 9.74519 cm<br>OK                                                                              |  |  |  |







#### General principle

- Backward tracking from SV up to the source area (external and isotropic).
- Estimate of each backtracked particle weight.
- Particle source : user-defined electron spectrum => tracking of primary electrons and secondary photons (Bremsstrahlung).

#### Sensitive Volumes

- Physical volume in your model => Forward tracking inside SV for energy deposition calculation,
- Point detector => tabulated data for energy deposition in Silicon.

#### Calculation results in the SV

- Energy and dose deposition,
- Fluence of transmitted particles.



#### Trajectory visualisation

- Trajectory view of all particles tracked during the simulation
- Information on each particle step







# Results and Validations



March 28<sup>th</sup> 2011

13



#### Validations performed using NOVICE (EMPC):

#### Electron flux at geosynchronous orbit

- Realistic satellite model,
- Total dose due to electrons and Bremsstrahlung photons.

#### Electron flux of Jovian environment

- Range of electron energy from few keVs to 1 GeV
- Transmitted electron flux in the optical lenses of a Star Tracker.

#### Quasi mono-energetic electron flux

- Narrow peak around 1 MeV,
- Comparisons with actual irradiation test.



#### Complete Spacecraft

- Satellite structure,
- Electronic units,
- Component packages.

#### Geostationary environment

Electron flux up to 5 MeV

#### Results

- Total deposited dose (primary electrons and Bremsstrahlung photons)
- Electron transmitted fluence at component chip level





#### Results

Deposited dose and transmitted fluence comparisons against NOVICE





17

#### Star Tracker for Laplace mission

- ESA funded study for evaluating Star Tracker performance in high radiation environments, L1
- SODERN's Hydra Star Tracker modeled in FASTRAD,
- Worst case electron flux
  - Electron flux up to 1 GeV

#### Results

 Transmitted electron flux on optical lenses



**CNES/ESA** final presentation days 2011



#### Results and comparisons for L1 lens





#### Results and comparisons for L7 lens





- Validation with an actual experiment
  - Dodecahedron for an isotropic irradiation,
  - dosimeters under a 1 MeV electron irradiation beam.
- Energy spectrum described as a narrow peak around 1 MeV using a Gaussian law
- Normalised results
  - Deposited dose per particle, per cm<sup>2</sup>





#### Results and comparisons with NOVICE

| Components =>       | TSD      | HEXFET   | Alanine Pellets |
|---------------------|----------|----------|-----------------|
| FASTRAD ( rad(Si) ) | 5.66E-09 | 1.22E-08 | 1.20E-08        |
| NOVICE ( rad(Si) )  | 6.76E-09 | 1.20E-08 | 1.13E-08        |
| Difference (%)      | -16.31   | 1.45     | 5.99            |

#### Irradiation not fully completed

• First results seem to be in correlation with calculation.



#### Reverse Monte Carlo algorithm fully implemented in FASTRAD

- Electrons and photons from 1 keV to 10 MeV (1GeV for electrons),
- Dose and energy deposition calculation,
- Transmitted flux calculation,
- Particle trajectory visualisation,
- Convergence study.

#### Results validated against NOVICE

- For every external spectrum type : Geostationary orbit, Jovian environment (high energy) and mono-energetic distribution.
- For every calculation output : deposited dose, transmitted flux.

#### Continuous development:

- Constant improvement,
- On-demand development for adaptation to user requirement:
  - X-Ray inspection,
  - Bunker designer tool,

• ...