

Guillaume PEDROZA www.adveotec.com \cong : +33 (0)1 60 86 43 61 gpedroza@adveotec.com

Influence of gamma and proton radiation on COTS Silicon and InP based photodiodes and determination of EOL performance through modeling

CNES/ESA Final Presentations Day

28 March 2011

- **Project framework**
- Components description
- Main experimental results
- Electro-optical modeling
- End Of Life performance prediction

- Two projects funded by CNES :
 - Reliability evaluation of Hamamatsu photodiodes for a potential use in the Galileo mission

step forward

- Reliability evaluation of InGaAs photodiodes

Radiation tests : part of an evaluation program

Si photodiodes

InGaAs photodiodes

a step forward

Cumulated effects : radiation and ageing

- COTS Silicon photodiode fabricated and qualified by Hamamatsu
- Designed for precision photometry
- Reference S1337-1010BQ
- Application : Galileo

Page 5/34 R037R006AET01, 28 March 2011, CNES/ESA Final Presentation Days

- COTS InP/InGaAs photodiode module fabricated by 3S Photonics (France)
- Designed for pump laser diode monitoring, qualified for undersea telecommunication applications (Telcordia)

Reference 1931SGM

	SiN _x
P⁺-InP N⁻-In _{0.53} Ga _{0.47} As	
N+-InP substrate	

Rad	diation	test	t pla	n :	Silico	on	ADV	a step forward
Gamma	Dose rate	50 ra	ad/h	700) rad/h	2 k	krad/h	7,7 krad/h
rays	16 krad				✓			
2 DUTs ON, 2 OFF	32 krad	\checkmark		\checkmark				
(for each condition)	50 krad	\checkmark			\checkmark		\checkmark	\checkmark
Protons	Energy Fluence		30 M	leV 60 MeV		v	100 MeV	150 MeV
+ multi-energy	1,7×10 ¹⁰ p	o/cm²			\checkmark			
5.4×10 ¹⁰ p/cm ²	5×10 ¹⁰ p/cm ²				\checkmark			
(All DUTs OFF)	10 ¹¹ p/cm ²		\checkmark		\checkmark		\checkmark	\checkmark

Radiation test plan : InGaAs							
Gamma	Dose Dose rate	4 krad	5 krad	20 krad	50 krad		
rays	28 rad/h	\checkmark		\checkmark	\checkmark		
1 DUT ON, 1 OFF for each condition	310 rad/h		\checkmark	\checkmark	\checkmark		

Protons	Fluence Energy	5×10 ¹⁰ p/cm²	10 ¹¹ p/cm²	5×10 ¹¹ p/cm²	10 ¹² p/cm²
+ multi-energy	30 MeV	\checkmark	\checkmark	\checkmark	\checkmark
5.4×10 ¹⁰ p/cm ²	80 MeV			\checkmark	
(All DUTs OFF)	190 MeV			\checkmark	

Page 8/34R037R006AET01, 28 March 2011, CNES/ESA Final Presentation Days

However, no responsivity drift

Dark current increased by 2 decades at -0.1 V after protons

a step forward

Gamma effects negligible compared to proton's The photodiode is more affected by displacement damage effects

Experimental results : InGaAs and γ **-rays** step forward Dark current increased with dose High dose rates are more destructive Higher degradation when unbiased 3×10⁻¹⁰ \rightarrow 28 rad/h OFF → 28 rad/h ON 2×10⁻¹⁰ → 310 rad/h OFF Dark current drift (A) → 310 rad/h ON 1×10⁻¹⁰ 0 -1×10⁻¹⁰ 10 20 30 40 50 60 0 Dose (krad)

No drifts observed on other electro-optical characteristics

Dark current increased by 3 decades after protons

Dark current noise increased too (white noise only, no 1/f)

Life test after radiation

Reliability not affected by radiation

gamma effects negligible compared to proton's

Minority holes diffusion current in the substrate Physical parameters found bibliographically and experimentally

Total photocurrent = sum of the photocurrents generated in the three areas

→ Electric field enhanced generation

P.A. Martin *et al.*, J. Appl. Phys. **52**, 7409 (1981)

+ diffusion at higher temperatures

Page 21/34 R037R006AET01, 28 March 2011, CNES/ESA Final Presentation Days

$$D_d = NIEL.\Phi_P$$

k: degradation factor

 $\frac{1}{\tau_p} = \frac{1}{\tau_{p,0}} + k.D_d$

Use of mono-energetic proton beam validated

EO modeling : Si after irradiation

a step forward

As in Si, the use of mono-energetic proton beam is also validated

Simulation of the space environment using OMERE software

ep forward

Equivalent displacement damage dose for the Galileo mission

- Distance to Earth : 23 222 km
- Inclination : 56 °
- Spacecraft lifetime : 12 years
- Radiation belt protons model : AP8 Min. standard
- Solar particles model : ESP (probability : 85 %)

Shield thickness (mm)

LEO (5 years), MEO (12 years), GEO (20 years)

- Evaluation of silicon and InGaAs photodiodes' performances under radiation
- Cumulative tests demonstrate no effect of radiation on lifetest
- Successful modeling of electro-optical characteristics and effects of proton radiation through physical simulation and interpretation
 - High quality optoelectronic measurements (metrology) required for this modeling tool
 - Prediction of end of life performances for space applications is possible thanks to the model

ADVE a step forward

All our appreciation goes to : CNES for funding and support 3S Photonics for having provided photodiode modules and expertise IMS Laboratory for physical analysis

Thank you for your attention

Page 34/34 R037R006AET01, 28 March 2011, CNES/ESA Final Presentation Days