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Overview of recent R&T activi

optoelectronics

| Evaluation of imagers degradation

- Influence of test conditions on the final degradation
. Goal : refine the final degradation evaluation
. Part of a CNES/Onera PhD study (Emma Matrtin)
. Example of results in next part
. Inputs for DSNU estimation
. Monoenergetic and spectrum proton irradiation with normal incidence

. Evaluation of the spectrum DSNU from monoenergetic irradiation thank to a fit method
proposed by CNES

H Identification of defects generated by displacement damages

- Goal : understand and estimate the origin of the electrical degradation in
electronic devices

= NIEL calculations
= From bulk defects to electrical effect

. Influence of doping type and level
. High energy deviations
- Method

Use of Deep Level Transient Spectroscopy (DLTS) on irradiated photodiodes
Extraction of defects nature and concentration
Comparison with NIEL calculations
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Spectra examples for photodiodes
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Extract parameters for
each defect type
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The fraction of each defect type depends on the incident particle type
and energy
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100 MeV proton spectra with fluence
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|::> The defect concentration is proportionnal to the fluence
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Defect introduction rate compared to NIEL (concentra
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Input results for effective NIEL validation (Christophe Inguimbert's presentation)
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Dose Rate And Static/Dynamic |

On CCDs Degradation: col

| CCDs are key components for space missions

- Heart of the payload for space and Earth observation
. Generally need of high electro optical performances
- Need to meet the radiation requirements
- Limited number of manufacturers

=> reduced number of possible candidates
- Expensive devices

=> reduced number of samples for radiation tests

= MIL-STD-883G or ESA-SCC 22900 test methods look for the worst case of
degradation

d Case of SPOT 5 mission

- In flight degradation of a CCD is much lower than ground testing results (factor
of twelve on dark current density). Device operates 7% of time

: Would it be possible to reduce the margins and still be conservative?

| Test campaign on CCDs with the same reference as SPOT 5 devices

: Investigate dose rate and bias condition effect
- Compare results with in-flight data

é ONERA




Q Device TH7834 e2v

. 12000 pixels linear CCD, optical size

(6.5um)?

- Two registers, 4 outputs

: Multi spectral detector of SPOT 5

: 7% active during the mission (rest = off)
=> reproduce this duty cycle with 100s
period

Q Measurement conditions

. Dark current at 26°C with a dedicated
test bench

. Result converted in nA/cm? assuming the
optical window area

- CTI measured thank to postscan signal

VST

®L2

L1

T|—||I

Tlll—l

TI_I||T|,|_III

I e ——

N

N

[ v [ n

IG low lag
photodiode

V ph

(N)

Photosensitive pixels

Voffset

Pixel

ONERA




Irradiation test plan

7 Devices

5 CCDS for 8°Co (UCL GIF)

Bias
OFF 7% ON | 100% ON
Dose rate 20 CCD 8
Gy(Si)h 5 4 CCD 9
0.36 CCD 12 | CCD 10 CCD 11
. Irradiations begin at the same time
. On state = activated in dynamic mode (1MHz)
. CCD 8 and 9 maintained biased untill the end

of other irradiations (all 20 Gy(Si))

24h RT devices biased like irradiated

1

168h 100°C biased like irradiated

3

168h 100°C 100% activated in dynamic mode

11

XL\7 2 CCDS for protons unbiased

Proton | Fluence | Dose | NIEL(Si) [Displacemen
energy |[p+/cm?]| (Si) |[MeV.g.cm?]| tdamage
[Mev] [Gy] | NEMO 1.1 [MeV/g]
SRIM
CCD6 | 62 (UCL) | 8.3x10° | 115 3.3x10° 2.7x107
CCD 7| Spectrum| SPOT5 | 11.2 1.7x107
[8;114] | mission
MeV (KVI)] (5 years)

proton irradiation

| |

Long time unbiased storage

3

168h 100°C unbiased

3

168h 100°C 100% activated in dynamic mode
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Dose rate effect

d  More degradation at lower  <¢ 70 7
o 20 Gy (Si) After 24 hours at
_dose_ re}te at the end of the E 60 - room temperature -
irradiation O £
o
N
= i 0] i ® i
Device 7% biased S 40 =4 of 168 houfs
. 50% higher degradation 2 a0 - annealing at 100°C
[}
i . . . k]
S:]'Ir: vel_rgledYaojtebr_ f'rStd £ 20 - ——CCD 8_ 20 Gy(Si)/h 7%
annealing (7% biased) o T Endotiow ~#-CCD 9_3.1 Gy(Si)/h 7%
_ x dose rate - A -CCD 10_0.36 Gy(Si)/h 7%
|::> Time dependent and S o7 ‘ ‘ ‘ ‘ ‘
ELDRS-like 0 50 100 150 200 250
effect
Experimental time [h]
d Possible reasons
. High electron-hole recombinaison rate in « off » and High Dose Rate

. Slow charge transport in insulating oxydes
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End of 168 hours

annealing at 100°C
After 24 hours at
room temperature

a More degradation on biased
devices at the end of the irradiation
=> Factor of 3 from device to
device : typical MOS behaviour
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O Possible reasons: different
recombinaison rate because of bias

Y
o
!

—o—CCD 11_0.36 Gy(Si)/h 100%

20 [ — - CCD 10_0.36 Gy(Si)/h 7%
20 Gy(si) - A - CCD 12_0.36Gy(Si)/h 0%
0 T T T T T T
0 50 100 150 200 250 300

Experimental time [h]

a Different behaviour for first annealing (same bias as irradiation)
= Decrease of dark current 100% On device
= Increase for 7% and Off devices
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d Decrease of dark current g Before annealing and eccD8
< 10 1 hour annealing at 100°C ACCDY9
. s
- Almost the same final result for all o £1CCD 10
devices S 8 e cco 11
NG occD 12
. E 6 24 hou_rs Before 168h
=) |mportance of oxide charge on 3 annealing annealing at
_ 2 40\Y|@at 100°C vl
dark current degradation 5 N @
5 144 hours \/
< 20 annealing 168 hours
s at 100°C annealing
o 0 T T T /4/ T T T at J\-OOOC

0 50 100 150 200 250 300 350 400
Additional annealing time [h]

| Possible degradation modes
: Creation of leakage paths

- Extention of depleted area at the Si/SiO, interface combined
with the creation of interface generation states
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Proton results 1/2

d  Comparison with total dose
unbiased
- Higher dose rate and lower
charge yield
. Same dark current for half

total dose => effect of bulk
damage

- Annealing effect

. Effect of long time RT storage

. Same behaviour than with
CCD 12

. Competition between total

dose effect (increase) and bulk
defect annealing

Dark current density at 26°C [nA/cm?]
Before irradiation After irradiation

CCD 6 2.7 30.8 at 11.5 Gy(si)

CCD7 2.6 31.7 at 10.6 Gy(Si)

CCD 12 3.0 31.4 at 20.0 Gy(Si)
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Proton results 2/2

Annealing of bulk damaf'

10000 —o— Before irradiation
—#- After the irradiation (OFF)
—< Before_annealing
D Shape Of the dal’k CUI’I'ent 551000 —4— Annealing 172 hours (OFF)
. . . S —e- Annealing 168 h (ON)
distribution CCD 7 < PRSG TR
N
=> The tail disapears with annealing e
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occb10 ACCD 11 | .

>-08-05 (1CCD 12 o d CTI evolution
E 4.0E-05 8 | . No total dose effect
< 3.0E-05 PY | . No bias effect

2.0E-05 N | . Large annealing of bulk damage

1.0E-05

0.0E+00 ® ‘ @ ‘ & | 8 ‘

Before After irradiation Annealing at Annealing at
irradiation 100°C 100°C (ON)
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Additionnal mean dark density at

26°C [nA.cm™]

Assumptions - approximations

Not the same device batch between
tested parts and flight model

Uncertainty on the in-flight total dose
Data at 10°C modified to 26°C
Linear extrapolation to 20 Gy(Si)
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& CCD 7_proton spectrum [8; 114 ]MeV_
After irradiation

X In-flight data from SPOT 5_
2 Gy(Si)lyear

10
Total ionizing dose [Gy]
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Additionnal mean dark density at 26°C

[nA.cm'z]

50

B CCD 8_20 Gy(Si)/h -
After irrad

o CCD 8_20 Gy(Si)h -
After irrad and 24h at RT

¢ CCD9_3.1 Gy(Si)/h -
After irrad

_|©CCD9_3.1 Gy(Si)h - ||
After irrad and 24h at RT]

A CCD 10_0.36 Gy(Si)/h - ||
After irrad

A CCD 10_0.36 Gy(Si)/h -
After irrad and 24h at RT |

X In-flight data corrected at
26°C - 2 Gy(Si)lyear

0 5 10 15 20 25 30 35
Total ionizing dose [Gy]

Total dose
Close to low dose rate and 7% biased
Bulk damage not taken into account

Protons
Not the same bias and dose rate

Results in the same order of
magnitude - no strong overestimation
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d Main results

. Device sensitive to both ionization and displacements
. Strong dose rate and bias effects
. Important contribution of oxide charge in the dark current increase

. Large part of annealing of bulk damages after 168h 100°C

H Implication on hardness assurance testing

. Worst case given by the standards (ON bias)

. Interest to test the device in the same bias conditions as in-flight,
especially when those conditions strongly differ from worst case
. A way to approach the real degradation but:
" Possible ERDLS-like effect: be carefull on dose rate
" No assurance we have a worst case

. Problem to generalize those results

= Look at influence of other parameters (accleration rate of activation frequency,
temperature, ...)
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Perspectives

M| Estimation of the total dose degradation

. Experimental study of APS devices

. Effect of bias (activation) and dose rate
. Gamma vs proton irradiation

. Part of Emma Martin PhD study

M| Estimation of the DSNU

Modelisation of the DSNU after proton irradiation
Develop a Monte Carlo code based on GEANT 4 simulations

Take into account:
" the fraction of energy deposited in a pixel and its neighbours
. The pixel dimensions

Different steps:
. Monoenergetic protons with normal incidence => spectrum
. Energy distribution => electrical effect (DSNU)
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