Reliability assessment of optoelectronic and photonic devices in severe environments: architecture and applications of the OpERaS consortium

OpERaS : Opto-Electronic Reliability applied to Severe environments

L. BECHOU, P. SPEZZIGU Laboratoire IMS University of Bordeaux 1 CNRS UMR 5218

phone : +33 5 4000 2767 laurent.bechou@ims-bordeaux.fr piero.spezzigu@ims-bordeaux.fr

Advanced Electro-Optic Technologies

ims



### **Space : an example of severe environments**

#### RADIATIONS





### + HIGH THERMAL CYCLING : -160° C/+150°C + VACUUM (10<sup>-9</sup> torr) + VIBRATIONS (± 10g) + ELECTROSTATIC DISCHARGE







# **Optoelectronic in space applications**

# **Technologies :**

- Solid-State Lasers: LIDAR, metrology, interferometer, atomic clocks...
- > Detectors (X -> IR) and fiber sensors: T, P, mechanical stress
- > Optical links and interconnects: Intra-&Inter-satellite, Inter-chip
- > Photonic Signal Processing, Non-linear optics: optical data storage, µwave generation, MOEMS.

# **Applications :**

- > Astronomy / Planetary Exploration, Fundamental Science
- **Earth Observation, Remote Sensing**
- **>** Telecom Navigation
- > Space Transportation
- ≻ ISS



Source : Courtesy of Lumics GmbH, Berlin



Source : E. Armandillo, Space Optoelectronic Day, Cork, 2006





# **Evaluation/Qualification strategy and feed-backs (1/3)**

### General strategy

- tests according to MIL, Telcordia or electronic-related ESCC standards

### Huge constraints

- Cost reduction
  - small number of device per test groups
  - few characterisation steps and few number of electro-optical parameters measured

### - Tight time schedule

- not enough time between reference selection and FM procurement
- evaluation phase are more and more avoided
- -Small procurement volume (i.e. few tens of devices)
  - Insufficiently attractive for COTs manufacturers
- -Specific environments (i.e. radiation, vacuum, high temperature range)

Few amount of reliability data (especially true for custom devices or low volume productions)







# **Evaluation/Qualification strategy and feed-backs (2/3)**

### • Feed-backs

- Standard tests are generally not well-fitted for the devices
- Due to the small number of devices the objectives of the evaluation/qualification phases are not obvious

(Could we rely on these tests to guarantee the reliability of the device during the space mission ? How could we prove it ?)

- Difficulty to find companies that could take in charge evaluation/qualification tests (*The manufacturers are not always interested due to the low procurement volume*)
- Many anomalies during evaluation or qualification phases
- Difficulties to identify physical root causes and prediction of operating lifetime is traditionally extracted from empirical laws using classical methodologies ( $t_{50\%}$ , *MTTF*...)



### **Evaluation/Qualification strategy and feed-backs (3/3)**

#### THE "VICIOUS" CIRCLE FOR COTs DEVICES RELIABILITY !



### European space industry needs expression (2/2)

Round table "Main issues to be solved" - 12 may 2006 Workshop "Laser Diodes for Space Applications" (CNES Toulouse-France)

### CHARACTERISATION

- Qualifiation procedures and characterisation methods should be outlined,
- Where can we characterise\qualify our components?
- Failure analysis: where and which methods?
- Tests of hermeticity how to perform it and does it change our qualification?
- Database with history of failure analysis!
- Database for qualified (including radiations) products (COTs especially)
- COTs and procedure changes (lot)
- How to compute MTTF : guidelines needed
- Same for upscreening







### **General objectives of OpERaS**

- Scientific and technical Consortium between IMS Laboratory (University Bordeaux 1), AdvEOTec (French SME) and THALES Information Security System set up in 2007
- High synergy between industrial and academic expertises
- Establish a network of knowledge and experience (at European level)
- Data capitalization (AdvEOTec Eurelnet/IMS) depending on cooperative agreement level & NDA (respect to industrial or R&D benefits)
- Driving force for implementation of new characterization techniques
- Implementation of new approaches for reliability prediction in space environments (mixing physical failure analysis and statistical approaches)

























# **Project organization example** (1/2)







#### Initial characterizations (I-V, S-λ, Linearity, NEP)

Pre-evaluation phase (radiation effects)

Modelling

Bibliography Failure mechanisms Operating lifetime Client : CNES Selected component: PIN 850nm Si photodiode (COTs) Application : Galileo (atomic clock)



Depth [nm]

Ex. SIMS profile in P<sup>+</sup> zone (extraction of dopants concentration)

ims





Advanced Electro-Optic Technologies

**Initial characterizations** 

(I-V, S- $\lambda$ , Linearity, NEP)

"Light"

**Pre-evaluation phase** 

**Qualification phase** 



### Other projects carried out or in progress in OpeRAs (1/2)

- CHEMCAM project (2006-2007): Reliability of FP 0.78µm Laser diode : CNES/AdvEOTec-IMS
- Reliability of Si phototransistors (2007-2010) : CNES/IMS-Univ. Cagliari (1 PhD defended)
- > Evaluation of 0.98µm pump Laser diode for space applications (2008-mid 2010): CNES/AdvEOTec-IMS-TISS/3SPhotonics (1 PhD supported)
- On-going projects :
- > Evaluation of 1.55µm DFB Laser diode for space applications (2009-mid 2011) CNES-ASTRIUM-Thales Alenia Space/AdvEOTec/3SPhotonics
- Reliability assessment of commercial optocouplers (2009-2010)
  CNES/AdvEOTec-IMS/Micropac (USA)
- Failure analysis of 1.55µm Laser diodes under EOS/ESD tests (2009-mid 2011) CNES/AdvEOTec-IMS-TISS/3SPhotonics

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

## Other projects carried out or in progress in OpeRAs (2/2)

Funded projects for 2011:

- New generation of spectral-resolved cathodoluminescence imaging system for failure analysis investigations on photonic devices (2011-2013) : CNES/IMS-INSA
- New architecture of rad-hard optocoupler using VCSEL technologies (2011-2012) : CNES/IMS-IES
- ESD effects on low-frequency noise of 980nm pump Laser diode (2011) : IMS-IES/3SPhotonics

In submission projects :

Embedded passive devices in multilayer PCBs for high-frequency applications: innovative materials and in-situ thermomechanical stresses optical monitoring (IMS/AdvEOTec/Polyrise - EDA Projects and Programmes – ITP SIMCLAIRS in evaluation)

![](_page_15_Picture_8.jpeg)

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

### **Electrical and optical characterization test benches at IMS**

#### **Emitters**

Cryogenic bench L-λ, P-I, Far-field (chip on submount)

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

#### **Photodetectors**

CW & pulse I-V, P-I t<sub>r</sub>, t<sub>f</sub>, C-V

Δλ, RIN, Chirp, frequency modulation measurement (Fiber Laser diode)

![](_page_16_Picture_8.jpeg)

Spectral sensitivity, CTR, linearity and Gummel-plot

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

![](_page_16_Picture_12.jpeg)

![](_page_16_Picture_13.jpeg)

![](_page_17_Figure_0.jpeg)

### COD in 0.98µm Laser diode under vacuum

![](_page_18_Picture_1.jpeg)

<sup>2</sup>IMS Laboratory, University of Bordeaux I-ENSEIRB-CNRS UMR 5218, Talence, France <sup>3</sup>Centre National d'Etudes Spatiales, Toulouse, France <sup>4</sup>3S Photonics, Nozay, France

ISROS 2010, Cagliari (Italy) Copyright @ AdvEoTec 2010

#### - Experimental procedure -

8 components : 4 sealed and 4 punctured accelerate long high vacuum exposition

New dedicated bench : AdvEOVac

- Temperature, pressure, current, voltage, optical power and monitoring photodiode current in-situ, real time measurements
- Mass spectrometry control
- Residual pressure : 10<sup>-9</sup> torr

L-I, Q-I, V-I and low-level I-V characterisations in air and in vacuum (initial, intermediate, final)

Ageing conditions : 10<sup>-7</sup> torr, 60℃ and 800 mA ( →500 mW/device) during 5000 h deduced from step-stress analysis

![](_page_18_Figure_12.jpeg)

![](_page_18_Figure_13.jpeg)

![](_page_18_Picture_14.jpeg)

![](_page_18_Picture_15.jpeg)

![](_page_19_Figure_0.jpeg)

# An original DoE-based tool for silicon photodetectors EoL estimation in space environments

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

# Statistical Design of Experiments (1)

#### Issues in **phototransistors** degradations in space environment physical modeling approach:

- Needs high knowledge on devices and degradation physics
- Models will become very complex
- Technology dispersion is difficult to be taken into account
- In most of cases is not possible to extract all needed parameters
- Testing activity becomes onerous and may not cover all operating life conditions (i.e. space mission profiles)

![](_page_21_Figure_7.jpeg)

# Statistical Design of Experiments (2)

# **Design of Experiment** (DoE) could be used to foresee device degradations towards potential missions

Design of Experiments is a structured, organized method for determining the relationship between factors affecting a device characteristic and the characteristic itself

![](_page_22_Figure_3.jpeg)

- Does not need knowledge in devices physics "black-box" approach
- Basic knowledge in TID and DDD effects
- Models are based on a pre-defined polynomial function of degradation factors

ims

THALE

- Technology dispersion could be taken into account
- Could be easily extended to other devices and technologies

# Study Domain definition (1)

**<u>TID</u>** and **DDD**: the experimental damage factors

The study domain boundaries depend on test facilities capabilities:

 $0.1 \text{ krad} \leq TID \leq 100 \text{ krad}$ 

 $10^{6} \text{ MeV/g} \leq DDD \leq 10^{9} \text{ MeV/g}$ 

Proton energies: 184MeV and 30MeV

TID and DDD deposition with  $\gamma$ -rays and protons irradiation  $\rightarrow$  TID is also deposited by proton irradiation

The Domain in which the couple (TID,DDD) could be deposited with **only proton** irradiation is defined by (using a logarithmic scale):

(1)  $\log(TID) \ge \log(LET(184)) + \log(1.6 \cdot 10^{-11}) - \log(NIEL(184)) + \log(DDD)$ 

(2)  $\log(TID) \le \log(LET(30)) + \log(1.6 \cdot 10^{-11}) - \log(NIEL(30)) + \log(DDD)$ 

ims

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

# Study Domain definition (2)

#### Study Domain

- TID&DDD for different **GEO/MEO/LEO** mission profiles (OMERE)
- Experimental points given by a DoE software and based on a "optimality criterion"

![](_page_24_Figure_5.jpeg)

ims

# Polynomial response definition

**Pre-defined** *Response* function :

$$R(x, y) = Z0 + A \cdot x + B \cdot y + C \cdot x^{2} + D \cdot y^{2} + F \cdot x \cdot y$$

where x = log(DDD) and y = log(TID).

**R**(**x**,**y**) : response of interest (*i.e. photocurrent, darkness current, or Sp. Responsivity*)

**B=Z0,A,B,C,D,F** : the **unknown coefficients** of the polynomial.

 $\rightarrow$  9 Equations (for 9 experiments) and 6 unknown system:

$$\boldsymbol{R}_{\text{exp}} = \boldsymbol{X} \cdot \boldsymbol{B} \qquad \square \qquad \boldsymbol{B} = (\boldsymbol{X}^T \cdot \boldsymbol{X})^{-1} \cdot \boldsymbol{X}^T \cdot \boldsymbol{R}_{\text{exp}}$$

![](_page_25_Picture_8.jpeg)

# Experimental Results (1)

Irradiation sessions: "OFF" and "ON"

**Responses:** 

Photocurrent Darkness current Spectral Responsivity

Methodology validation:

Beam degrader target mission simulation

800km – LEO – inclination of  $98^{\circ}$  – 7mm-thick spherical Al shield. Duration: 18 years

![](_page_26_Figure_7.jpeg)

The target DDD and TID are: **1.8 •10<sup>8</sup>MeV/g** and **9.32krad(Si)** 

corresponding logarithm values: 8.2553 (log(DDD)) and 0.9694 (log(TID))

NB: Dose Rate Sensitivity evaluation: not relevant

![](_page_26_Picture_11.jpeg)

![](_page_26_Picture_12.jpeg)

# Experimental Results (2)

### Normalized photocurrent: $I_{PH}/I_{PHO}$

1,0

0.8

0,4

0.2

<sup>0Hd</sup>I/<sup>Hd</sup> 6,

![](_page_27_Figure_2.jpeg)

# Experimental Results (3)

#### Optocoupler CTR degradation Type 2 (rad-hard) Type 1 (non rad-hard) - -"ON" Experiences DoE Experimental data ۲ 0% Beam degrader data 0% A 8 -20% -20% 8 -40% -40% "ON" Experiences \* \* ACTR -60% DoE Experimental data ۲ Beam degrader data -60% -80% -1 -100% 6 100(III) 0 -1 6 109(00) 0 10g(TID)

Predicted value: -14%

2

Predicted value: -2%

ims

Predicted values in agreement with Beam Degrader simulation

![](_page_28_Picture_5.jpeg)

2

q

![](_page_28_Picture_6.jpeg)

CTR

9

8

109(DDD)

# Experimental Results (4)

#### Reducing number of experiments

![](_page_29_Figure_2.jpeg)

**Predicted values in agreement with Beam Degrader simulation** 

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

# Exploiting DoE data (1)

#### From OMERE database: ionizing and displacement doses for different mission profiles

|                                 | Perigee         | Apogee          | Inclination | Period         | # of orbits |
|---------------------------------|-----------------|-----------------|-------------|----------------|-------------|
| LEO (Low Earth Orbit)           | <i>800</i> km   | <i>800</i> km   | <i>98</i> ° | 6043s          | 100         |
| MEO (Medium Earth Orbit)        | <i>1000</i> km  | <i>26768</i> km | 63.4°       | 28689s         | 300         |
| GEO (Geostationary Earth Orbit) | <i>35870</i> km | <i>35870</i> km | 0°          | <i>86400</i> s | 1           |

![](_page_30_Figure_3.jpeg)

Extracted photocurrent polynomial from "ON" irradiations results:

$$\frac{I_{PH}}{I_{PH\,0}}(x, y) = 0.636 \cdot x - 0.385 \cdot y - 0.059 \cdot x^2 - 0.069 \cdot y^2 + 0.052 \cdot x \cdot y - 0.692$$

![](_page_30_Picture_7.jpeg)

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_9.jpeg)

# Exploiting DoE data (2)

#### Example: LEO mission profile

Photocurrent degradation vs. mission duration (for different shield thicknesses) or vs. the shield thickness (for different durations)

![](_page_31_Figure_3.jpeg)

The same charts could be easily obtained for MEO or GEO mission profiles

![](_page_31_Picture_5.jpeg)

# Exploiting DoE data (3)

#### Failure criterion: 40% photocurrent degradation

![](_page_32_Figure_2.jpeg)

These charts provide a quick overview, for qualification purposes, of the amount of shielding needed for specific orbit and a fixed duration, for a fixed failure criterion.

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

# Exploiting DoE data (4)

#### **Reliability data extraction**

From DoE data, OMERE mission profiles data, and considering a **40% of photocurrent degradation**, using a lognormal distribution we obtain the cumulative function plots:

![](_page_33_Figure_3.jpeg)

# Conclusions

We have demonstrated that statistical **Design of Experiments** is a very useful tool to evaluate BSPA degradations in space environment

- It needs basic knowledge of device and device degradation physics
- As device is described with the "black box" approach, it could be extended to other families of components
- It provide a **tests plan** depending on test facilities capabilities
- With only one tests session, it gives the BSPA degradation previsions relative to a wide range of possible space mission profiles
- Could be optimized (reducing number of experiences)

Design of Experiments is suitable as a **rapid qualification method** for devices that are sensitive to both **ionizing** and **displacement doses** 

![](_page_34_Picture_9.jpeg)

![](_page_34_Picture_10.jpeg)

![](_page_34_Picture_11.jpeg)

### **OpERaS** contacts

![](_page_35_Picture_1.jpeg)

 AdvEOTec – F. Rosala (CEO)
 Expertise and experience in optolectronic qualification
 +33 (0) 1 6086 4361
 francoisrosala@adveotec.com
 www.adveotec.com

 ✓ IMS – L. Bechou (Full Prof.) Laboratory with expertise and experience in optoelectronic reliability for space and telecom applications\* +33 (0) 5 4000 2767 laurent.bechou@ims-bordeaux.fr
 www.ims-bordeaux.fr

 THALES ISS/CEL – G. Guibaud (Failure Anlysis Expert)
 Expertise on failure analysis, security, dependability of electronic components +33 (0) 5 6128 1695 gerald.guibaud@cnes.fr www.thalesgroup.com

THALES

Win -Win partnership

**OpERaS** 

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

![](_page_35_Picture_9.jpeg)