

MUSCA SEP3 to investigate the Single Event Effects for Space Missions

S. Duzellier, G. Hubert, S. Bourdarie, T. Nuns (onera) C. Boatella-Polo, F. Bezerra (cnes)

return on innovation

2009-2010 CNES R&T

Motivations

Motivations at developing a new SEE predictive method ?

- Obsolescence of conventional methods
- Operational error rate calculation
 - \rightarrow the device shall be considered within its material, radiation and operational environments
- Analysis of SEE anomalies and calculation of dynamic rates
 → "space weather" problematic and forecasting rate
- New and relevant methodologies for modern devices
 - \rightarrow To investigate the rate trends induced by technological roadmap
 - \rightarrow To prevent the emerging effects

→ MUSCA SEP3 developed by ONERA since 2007 Pragmatic & global approach Based on physical mechanisms & sequential modeling

Multi-scale approach

SEE: multi-scales and -physics scenario (nsrec2009)

CNES/ESA EEE component radiation effects (R&D final presentation days 2011)

Outline

Introduction

Operational rate calculation: illustrations

- Flight rates (SAC-C): mean and dynamic (flares)
- Anomaly expertise
- Heavy ion proton link
- Emerging effects
- Synthesis and perspective

SAC-C experiment

ICARE experiment on-board SAC-C :

- On-board the Argentinean satellite SAC-C (alt: 707km, incl: 98.2°)
- SEE data for more than 8 years in orbit (launch November 2000)

HM628512, KM684000 (SRAM4M)

SEE count at flares: conventional method overestimates by x 100-500 & multiple effects not considered

SAC-C experiment

ICARE/SAC-C modeling

CNES/ESA EEE component radiation effects (R&D final presentation days 2011)

SAC-C experiments: mean rate (nsrec2009)

Calculated rate compared with "cumulated "in-flight data

• Analysis of the orbit: radiation belts and cosmic contributions

SAC-C experiments: sporadic events (nsrec2010)

Calculated rate compared with in-flight SEE count (Nov 2001)

- KM684000 (total capacity 24Mbits)
- SEU count per hour and total SEU count during the event

SAC-C experiments: sporadic events

Calculated rate compared with in-flight SEE count at flares

- Total SEU counts for 7 different solar events
- Bars : upper/lower bounds induced by a 20% variation of the device parameters

CNES/ESA EEE component radiation effects (R&D final presentation days 2011)

Anomaly expertise

Example: ''hard'' device response

- Ground tests: heavy ion low SEU sensitivity (high threshold LET)
- \rightarrow low (no) SEU sensitivity to proton expected

Actual flight data have shown no SEU induced by cosmic rays but protons!

=> Investigation to check for materials effects

Need to describe the device with multi material approach

CNES/ESA EEE component radiation effects (R&D final presentation days 2011)

Proton ↔ heavy ion link (1)

Additional SEE data deduced from ground tests

To overcome limitations of testing, reduce costs ...

Proton ↔ heavy ion link (2)

HM628512 (SAC-C device)

Heavy ions ⇒ protons

Protons ⇒ Heavy ions

12

Emerging effects (radecs2009)

Technological roadmap

- Process integration, material introduction and circuitry complexity
 - SEU sensitivity threshold reduction

Emerging effects

14

Impact of proton direct ionization for space missions

• What about if 500 -> 65nm technologies on-board SAC-C orbit

ONERA

Outline

Introduction

- Operational rate calculation: illustrations
 - Flight rates (SAC-C): mean and dynamic (flares)
 - Anomaly expertise
 - Heavy ion proton link
 - Emerging effects
- Synthesis and perspective

Synthesis

The SER conventional approach is no longer valid

- Multi-physics Monte-Carlo approach is relevant to perform SER operational calculations
- MUSCA SEP³ validation steps for ground and operational configurations (SRAM 350-65nm)

MUSCA SEP³ development designed to

- Provide operational SERs (belts, cosmic and solar flares)
- Allow for investigating the SEE trends (technological roadmap)
- Direct proton ionization is an important challenge
 - low-energy proton testing is mandatory for \leq 90nm technologies
 - associated with prediction to deduce the operational effect (shielding)
- A reliable predictive approach requires a correct description of the environment dynamics but also of the shielding configuration

Perspective

MUSCA SEP³ engineer tool development (r&t cnes)

- ONERA, CNES and TRAD working group
- 1st version available 2011 (dedicated to agencies, end-users ...)

!!! research activities -> engineering tool

Research activities (onera, r&t cnes)

- Track effects
- Addict: collection model
- Extension to other SEE phenomena
 - SET in CMOS technology (logic chains \rightarrow complex devices)
 - Destructive effects (1st attempt to use MUSCA for simulating SEL and SEB in 2010)