

Influence of RPP SEPR Prediction Parameters

Implementation of Uncertainty Statistical Estimation for SEPR Calculation in OMERE

N. SUKHASEUM, N.CHATRY (TRAD, Labège, France) R. ECOFFET, F. BEZERRA (CNES, Toulouse, France)

Introduction

Influence of SEE rate prediction parameters

- Influence of device parameters
- Influence of Weibull fit adjustment parameters
- Influence of radiation environment

Implementation of uncertainty statistical estimation for SEPR calculation in OMERE

- Weibull fit optimisation
- Statistical approach
- Confidence interval

Conclusion

Introduction

Introduction

Influence of SEE rate prediction parameters

- Influence of Device parameters
- Influence of Weibull fit adjustment parameters
- Influence of radiation environment
- Implementation of uncertainty statistical estimation for SEPR calculation in OMERE
 - Weibull fit optimisation
 - Statistical approach
 - Confidence interval

Conclusion

Influence of device parameters

Parameters studied

- Saturation cross section σ_{SAT}
- Depth of the sensitive volume c
- LET threshold LET_{th}
- OMERE (freeware www.trad.fr) component database created with over 2000 theoretical components
 - 10⁻⁹< σ_{SAT} <10⁻³ cm⁻²
 - 1<c<100 μm
 - 1<LET_{th}<40 MeV.cm².mg⁻¹
 - ✤ 1<W<50</p>
 - ✤ 1<S<20</p>

• The SER calculations have been performed with 3 sensitive volume (SV) types

Influence of device parameters

Tests & radiations

For deep SV, the SER is mainly due to particles with LET values around (and above) the LET_{th}

- Direct relation tolerable between the LET_{th} measured during the test and the LET spectrum of the environment
- Conclusion → the LET_{th} must be carefully measured during the test in order to avoid a significant increase of the error margin

For cubic SV

The c value has a great impact on the SER

For flat SV

 For commonly used variation of c (1 to 10 μm), the impact on SER is negligible

Adjustment parameters

- For W,S wide variation, the ratio between the lowest and highest SER can reach 10⁵
 - W,S define the "elbow" region of σ(L) → LET range of particles involved in SEE occurence
- W and S have a significant impact on SEE rate
 - Greater impact for deep and cubic SV than for flat SV
- W and S parameters must be carefully adjusted
 - LET_{th} and saturated cross section are not sufficient to fully characterize a device

Contribution of the different ion species

Identification of predominant contribution elements

- $\,{}^{_{\rm D}}\,$ Fe for flat SV at all ${\rm LET}_{\rm th}$
- Ions heavier than Fe for deep SV when LET_{th}>30

Determination of LET range for those elements

- Deep SV: elements with LET at least equal to LET_{th}
- Flat SV: low LET have predominant contribution on SER, even at high LET_{th}
- At high W and S values, SEE are mainly due to high LET particles
- Determination of energy range involved in SEE rate
 - A wide range of energy is involved in SER prediction

Influence of environment

Result table summary

	LET th	Cubic SV	Deep SV	Flat SV
Predominant elements	1	Fe (48%)	Fe (54%)	Fe (35%)
	10	Fe (59%)	Fe (63%)	Fe (39%)
	35	Fe (23%)	Pb (23%)	Fe (43%)
Range of LET involved in MeVcm2/mg with 1g/cm² shielding de	1	0< LET <10	> à 1	LET< 5
	10	5< LET <30	> à 10	LET< 5
(with 10g/cm2 shielding LET involved are lower)	35	20< LET <60	> à 35	LET< 5
Range of Energy for Predominant elements in MeV/nucl (1 g/cm² shielding)		100 - 200	100 - 200	all energies
Range of Energy for Predominant elements in MeV/nucl (10 g/cm ² shielding)		200 - 500	200 - 500	all energies

 The most important contribution to the SEE rate in the incident radiation environment depends on the device parameters and SV shape

Parameter analysis conclusion

- The shape of the sensitive volume (c parameter) remains as a major issue
 - LET threshold and saturated cross section determined with heavy ions test are not sufficient to fully characterize a device sensitivity
 - The direct relation between the measured LET threshold and the LET spectrum environment is not always representative
- The Weibull function shape fitted to test data (W,S parameters) impacts significantly the calculated SEE rate
 - The "elbow" region of the cross section curve should be well described as it impacts directly the LET range of the particles involved in SER

10

- Introduction
- Influence of SEE rate prediction parameters
 - Influence of Device parameters
 - Influence of Weibull fit adjustment parameters
 - Influence of radiation environment

Implementation of uncertainty statistical estimation for SEPR calculation in OMERE

- Weibull fit optimisation
- Statistical approach
- Confidence interval

Conclusion

Weibull fit optimisation

Context

- Device SEE sensitivity characterized by heavy ion test
- Number of test achieved <u>limited</u> (cost, time schedule...)
- There is an <u>uncertainty</u> in determining the Weibull parameters (W, S, σ_{sat} , L₀)

 \rightarrow uncertainty in the rate calculation

Problem

- Uncertainty direct calculation impossible
 - RPP model too complicated
 - Strong hypothesis admitted for the rate calculation
- Find a method able to estimate the uncertainty in the rate calculation with a <u>statistical approach</u> [R. Ladbury 2007]

Estimation of the uncertainty in the calculation of the 4 Weibull parameters

- Independent information of L, # et Φ
- + Calculation of the best fit (W, S, σ_{sat} , L₀) for the test data
- Calculation of a confidence interval

Hypothesis

- Existing test data L, # et Φ
- Poisson statistical distribution

- Poisson distribution included in the fit calculation to determine the most probable Weibull parameters
 - Most probable equation for the test data
 - Most realistic rate according to the cross section measurements performed

13

- The input for the calculation is a set of test data
 - + LET L, number of event # and fluence Φ
- At each LET, the Poisson distribution is inserted in the calculation
 - via a statistical mean value µ

$$p(\#,\mu) = e^{-\mu} \frac{\mu^{\#}}{\#!}$$

+ μ is proportional to Φ and $\sigma_{cal}(L)$

$$\mu(L) = \Phi \sigma_{cal}(L)$$

At a given LET, the likelihood for # to equal μ is p

- A global likelihood P is calculated from the Poisson likelihoods p at each LET
 - The global likelihood P is the product of the Poisson likelihoods

$$P(\{\#_i\}) = \prod_i p(\#_i, \mu_i)$$

The cross section parameters are determined by optimizing the likelihood P with respect to the 4 Weibull parameters

$$\sigma_{cal}(L) = \sigma_{sat} \left(1 - \exp\left[-\left(\frac{L - L_0}{W}\right)^{c} \right) \right)$$

Variation of the 4 Weibull parameters to maximize the global likelihood P

- The (W, S, σ_{sat} , L₀) values maximizing P give the best fit equation for the test data
- The Weibull fit is optimized thanks to a genetic algorithm
 - Non-determinist global optimisation method
 - The global optimum is calculated via probabilistic transition rules applied to an initial « population »

- The P value associated to the best fit is called P_{max}
 - A <u>maximum likelihood ratio</u> method is used to calculate a <u>confidence interval</u> for the fit

$$\ln\left(\frac{P}{P_{\max}}\right) \ge -0.5\chi^2(1-\alpha,4) \qquad \qquad P_{\max} = \max(P)$$

- X(1-α,4) is the chi-squared statistic
- For a given space environment, a set of 4 Weibull parameters lead to only <u>one</u> rate value
 - The confidence interval defined for the fit enables to calculate a confidence interval for the rate

Confidence interval

- The Weibull function depends on 4 parameters
 - To visualize the confidence interval, only the variation of two parameters can be represented

The <u>calculated rate uncertainty can be limited</u> according to the test data used for the calculation

Confidence interval for the rate

Least-squares

Genetic algorithm

(Calculation performed with OMERE default environment)

Tests & radiations

Confidence interval calculation

Paramètres Weibull retenus : P = 2.291e-006 - LET seuil = 7.925901 - Sigma Sat = 7.266e-003 - W = 24.653957 - S = 6.023559 OK

alcul de l'intervalle de confiance						
Valeurs retenues : Intervalle da variation autour de la valeur retenue :						
- LET :	7.9259	min: 3.9630 max: 14.0000 pas: 0.5000				
-Sigma Sat :	7.266e-003	min: 7.194e-003 max: 7.266e-003 pas: 1.000e-002				
-W:	24.654	min: 19.654 max: 29.654 pas: 1.000				
- S :	6.024	min: 3.012 max: 7.024 pas: 0.500				
ATTENTION!! La valeur de LET seuil ne doit jamais être superieure du LET le plus bas auquel on assiste à un événement						
ATTENTION!! La valeur de Sigma Sat ne doit jamais être inferieure à la plus grande section efficace mesurée.						
Données pour le calcul de taux						
Nombre de cellules sensibles : 1 Epaisseur du volume sensible : 2.00 microns						
Pour le calcul de taux, l'environnement de la mission sera considéré.						
VALIDER		ANNULER				

	20	

TRAD studies realized with CNES support in the frame of SEE prediction improvement is going on in 2011...

- OMERE uncertainty beta version improvement
 - Automatic calculation of the confidence interval
- Charge deposition and LET variation in the SV
 - A charge deposition calculation methodology has been proposed in 2010
 → development of a software prototype to test it in 2011
- Method to adapt the RPP model to the different types of SEE
 - Application of different methodologies for SEU, SET, SEL, SEB...

