

A3PE3000L - ACTEL FLASH FPGA -IRRADIATION TEST RESULTS

ESA contract No 22327/09/NL/SFE – ProASIC3L Family Flash Based FPGA M. Grandjean, F.X. Guerre, Hirex Engineering

Reference Documents

2/47

S. Rezgui & al., "New Reprogrammable and Non-Volatile Radiation Tolerant FPGA: RTA3P," presented at RADECS 2007, Deauville, France, September 2007

$\square RD2$

S. Rezgui & al., "New Methodologies for SET Characterization and Mitigation in Flash-Based FPGAs," IEEE Trans. Nuc. Sci., vol, 54, n°6, pp. 2512-2524, Dec. 2007

ECSS Q 60-02, "Space Product Assurance, ASIC and FPGA development," July 2007

Summary

- Background and Objectives
- □ Device overview
- Statement Of Work (SOW) requirements
- □ Test Vehicle designs
- □ Test conditions
- Radiation test results

Steps

4/47

- Background and Objectives
- □ Device overview
- Statement Of Work (SOW) requirements
- □ Test Vehicle designs
- □ Test conditions
- Radiation test results
- □ Conclusion

Background and Objectives

- □ ProASIC3 Flash Based FPGA (ACTEL)
- Reprogrammable and Non-Volatile
- $\square > 1$ Millions gates
- □ Previous ACTEL test results (RD1 and RD2)

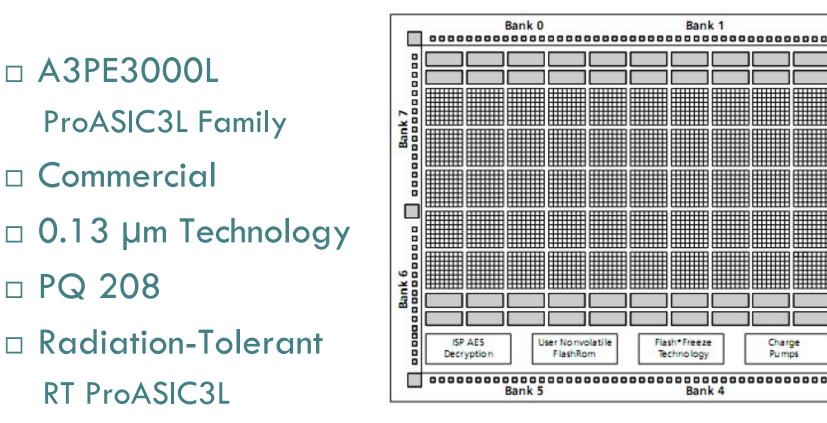
=> Very attractive for space applications

Steps

6/47

- Background and Objectives
- Device overview
- Statement Of Work (SOW) requirements
- □ Test Vehicle designs
- □ Test conditions
- Radiation test results
- □ Conclusion

Device overview



0000

00000

000000000000

Bank 3

□ RT3PE3000L / A3PE3000L same silicon

ESA - Microelectronics Presentation Days

Steps

8/47

- Background and Objectives
- □ Device overview
- Statement Of Work (SOW) requirements
- □ Test Vehicle designs
- □ Test conditions
- □ Radiation test results

SOW - Requirements (1/2)

- □ A3PE3000L radiation test (HIs, protons, TID)
- □ SEL, SEFI, SEU, SET and SEGR sensitivities
- □ Temperature: room up to 125 °C
- □ Frequencies: 2, 50, 100 and 200 MHz
- □ 2 Test Vehicle (TV) Designs:
 - TV1 Characterization of the FPGA
 - TV2 Characterization of SEE mitigation methods
 Reference Documents: RD1, RD2, RD3

SOW - Requirements (2/2)

□ TV1

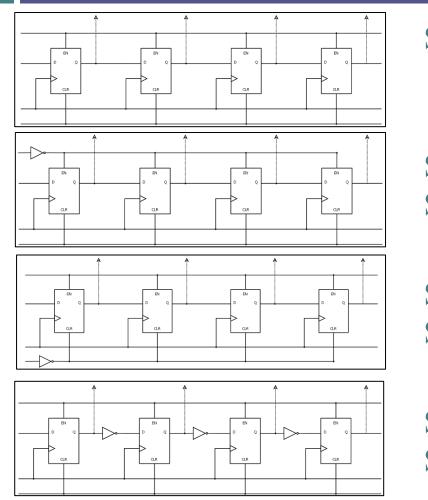
- $_{\circ}$ 14 SRs (1024 R-cells) with different I/O standards
- SRAM, UFROM
- CCC/PLL
- □ TV2
 - SRs (1024 R-cells) with SEU & SET mitigation methods

Steps

- Background and Objectives
- □ Device overview
- Statement Of Work (SOW) requirements
- Test Vehicle designs
- □ Test conditions
- Radiation test results

TV1 - Shift Registers

- □ 14 SRs
- □ Different clock sources and I/O Types
- □ Frequency up to 200 MHz


Shift Register	Clock source	I/O Type	Singularity	
1	External	3.3 V LVCMOS	Reference	
2	External	3.3 V LVCMOS	Enable C-cells	
3	External	3.3 V LVCMOS	Clear C-cells	
4	External	3.3 V LVCMOS	C-cells in-between R-cells	
5 to 8	External	3.3 V LVCMOS DDR	DDR registers	
9 to 10	External	2.5 V LVDS	LVDS buffers	
11 to 14	Internal PLL	3.3 V LVCMOS	PLL Clock	

ESA - Microelectronics Presentation Days

TV1 - SR 1 to 4

13/47

ESA - Microelectronics Presentation Days

SEU on registers

SEU on registers SET on enable signal

SEU on registers SET on clear signal

SEU on registers SET on C-cells

TV1 - SR 5 to 14

- □ Cores are identical to the SR 1
- □ 4 Channels with DDR I/O registers
 - $_{\rm O}\,$ SEU on registers and on DDR I/O registers
- □ 2 Channels with LVDS I/O buffers
 - SEU on registers
 - $_{\rm O}\,$ SET on LVDS I/O buffers
- □ 4 Channels clocked by the PLL output
 - SEU on registers
 - $_{\rm O}\,$ SEU and SET on the CCC / PLL

TV2 - Shift Registers

15/47

6 SRs including SEE mitigation methods
 Frequency up to 75 MHz

Shift Register	Sequential Cell Triplication	I/O Block Triplication	SET Filtering	Combinational Cell Duplication	Combinational Cell Triplication
1	×				
2	×	×			
3			×		
4	×	×	×		
5	×	×		×	
6	×	×			×

SRAM & UFROM

16/47

□ Only on the TV1 112 Blocks of 512 Words of 9 Bits • Frequency up to 20 MHz 8 Banks of 16 Words of 8 Bits • Frequency up to 10 MHz

Miscellaneous Parts

\square CCC / PLL:

- Only on the TV1
- Static mode (single frequency) set on 200 MHz
- Output clock used to clock 4 SRs (TV1)
- Lock signal supervised
- Configuration Flash, Charge pump and ISP
 - Verification of the functionality
 - Verification of the re-configurability

TVs - Design Results

□ TV1

- 14 SRs, 100 % of the Memories, 1 CCC with PLL, several I/O standards
- => 32 % of the logic core, 93 % of I/O

 \Box TV2

6 SRs, no memory, no PLL, LVCMOS 3.3V => 97 % of the logic core, 52 % of I/O

Steps

- Background and Objectives
- □ Device overview
- Statement Of Work (SOW) requirements
- □ Test Vehicle designs
- Test conditions
- Radiation test results

Power Supplies

- □ 13 power supplies
 - VCC: 1 x Core supply 1.5 V nom
 - Vbanks: 8 x Banks supplies 2.5 or 3.3 V nom
 - VPLLs: 2 x CCC / PLL supplies 1.5 V nom
 - VJTAG: 1 x JTAG supply 3.3 V nom
 - VPUMP: 1 x PUMP supply 3.3 V nom

\square V nom + 10 % for SEL tests

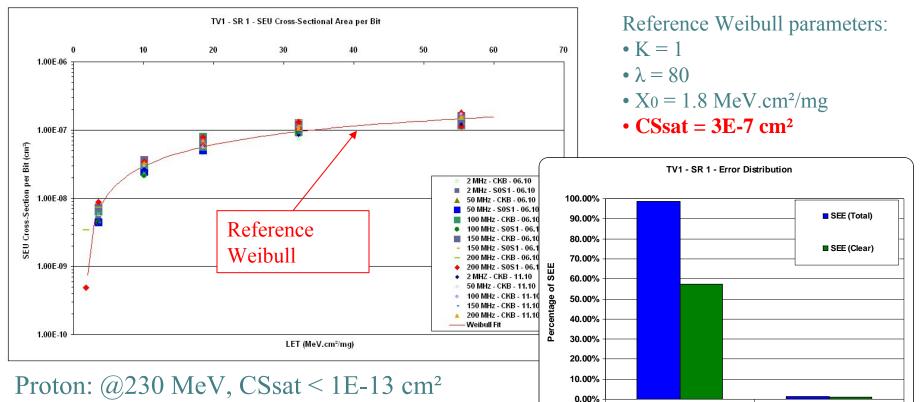
Test set-up

- □ Heavy ions: RADEF 2 campaigns
- □ Protons: PIF 1 campaign
- □ TID: design process is running
- □ Test sequence: fill / expose / check
- Dynamic, static and flash-freeze tests
- Selectable frequencies (up to > 200 MHz)
- □ Standard patterns (checkerboard and static)
- □ Specific algorithms

Configuration Flash Set-up

- Configuration sequence under beam: erase / program / check - using ACTEL tool
- Status declared by:
 - Success of operation (program passed / failed)
 - Design functionality
 - Verification of the re-configurability

Steps


- Background and Objectives
- □ Device overview
- Statement Of Work (SOW) requirements
- □ Test Vehicle designs
- □ Test conditions
- Radiation test results

(1/14) - TV1 - SR 1

24/47

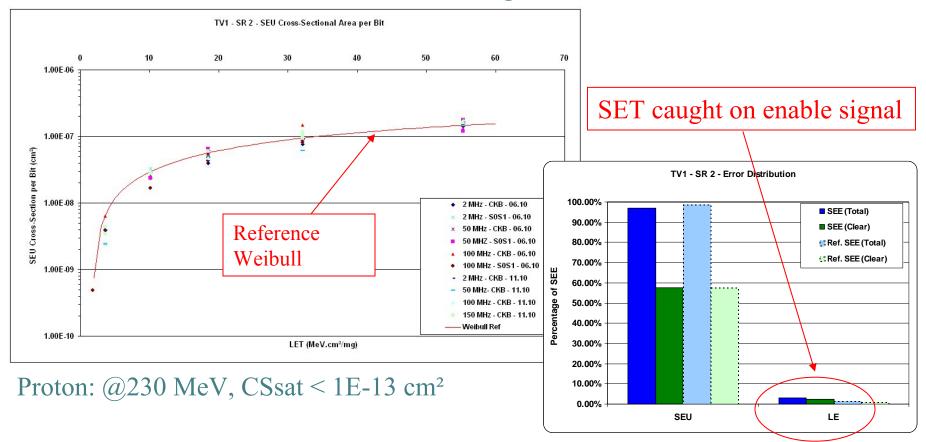
Reference channel - standard shift register

Low sensitivity => 1E11 p/cm² => Large dose => limits the characterization => 230 MeV

ESA - Microelectronics Presentation Days

March 28th and 29th 2001

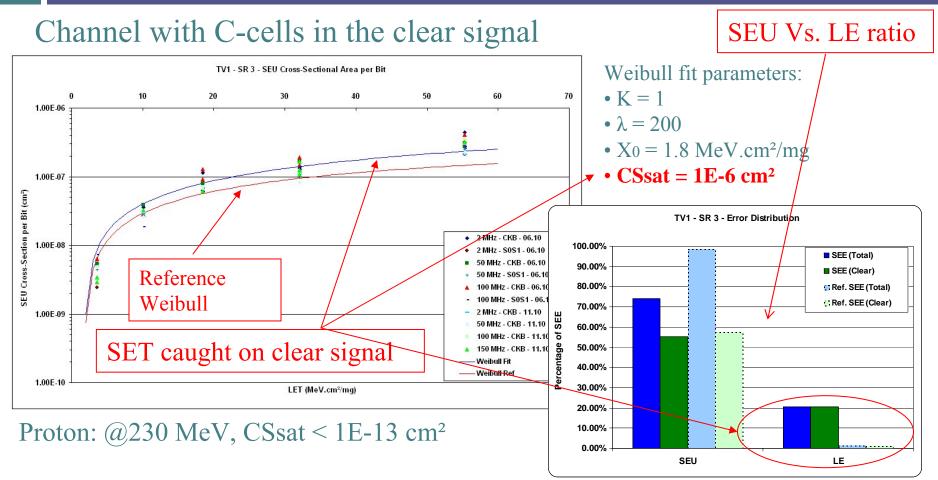
LE


SEU

(2/14) - TV1 - SR 2

25/47

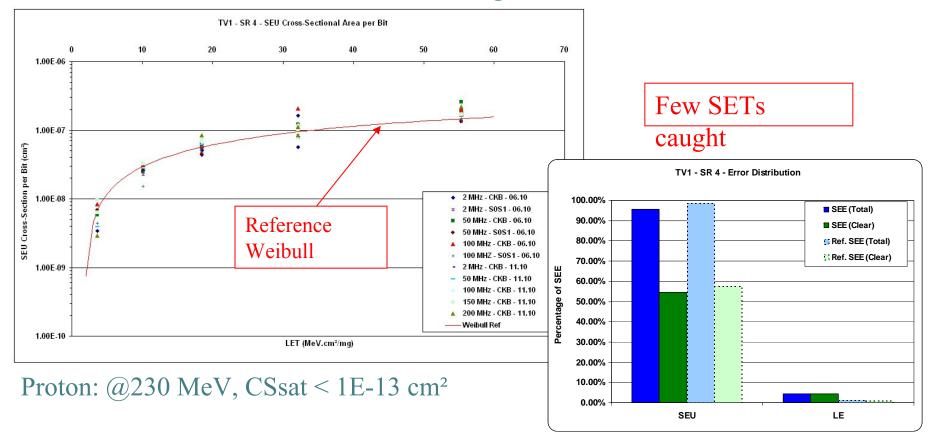
Channel with C-cells in the enable signal



ESA - Microelectronics Presentation Days

(3/14) - TV1 - SR 3

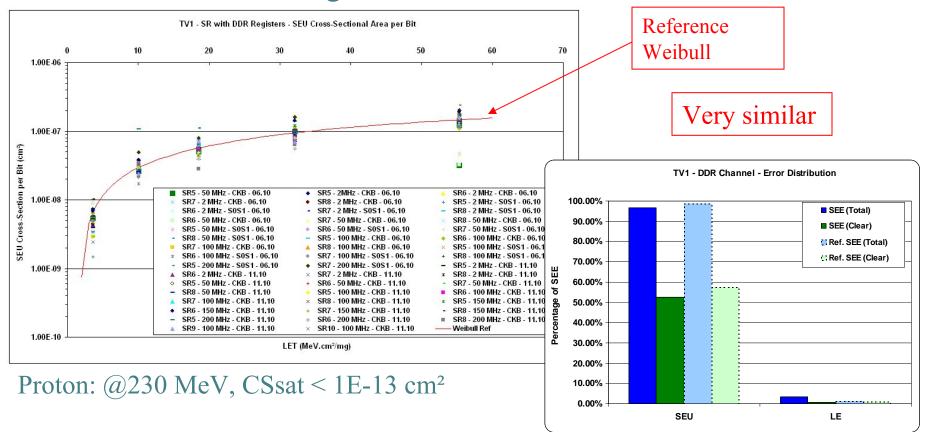
26/47



(4/14) - TV1 - SR 4

27/47

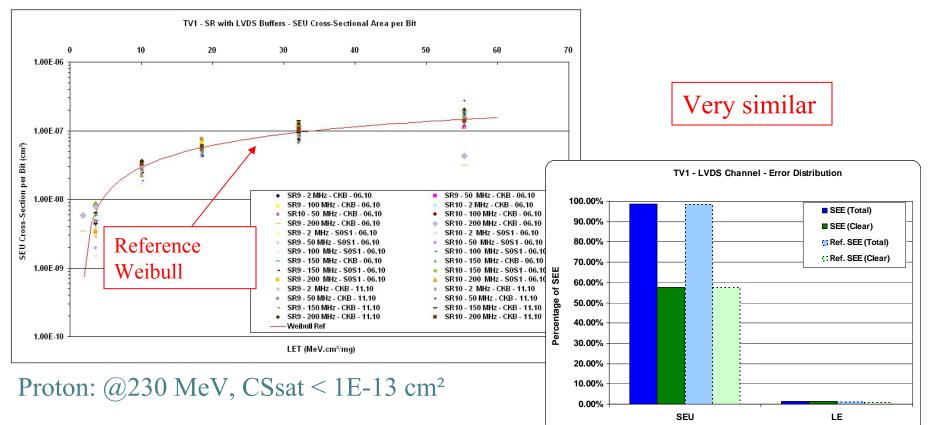
Channel with C-cells in-between registers



(5/14) - TV1 - SR DDR

28/47

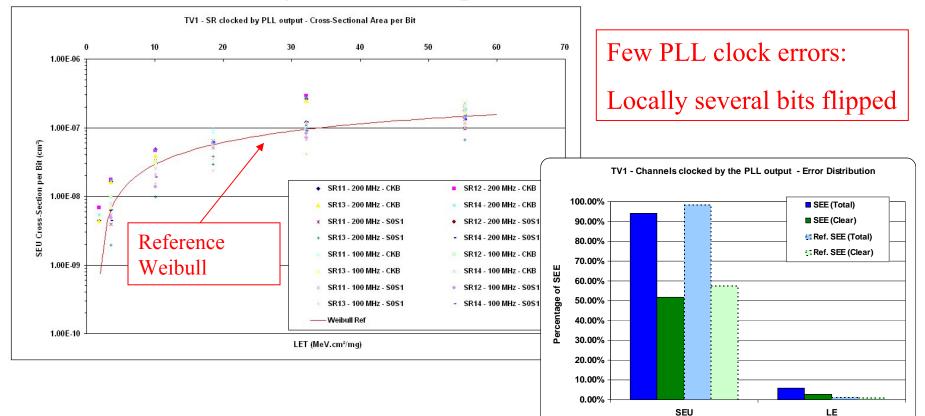
Channels with DDR registers


ESA - Microelectronics Presentation Days

(6/14) - TV1 - SR LVDS

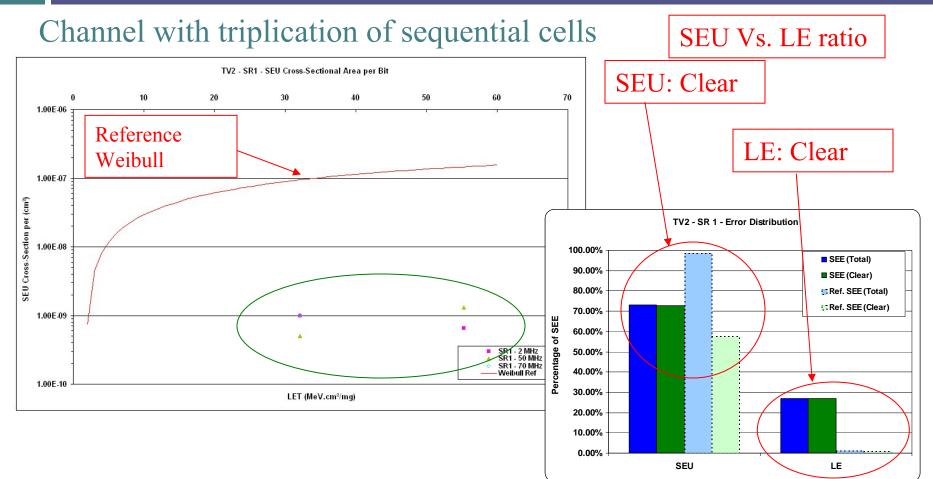
29/47

Channels with LVDS buffers


ESA - Microelectronics Presentation Days

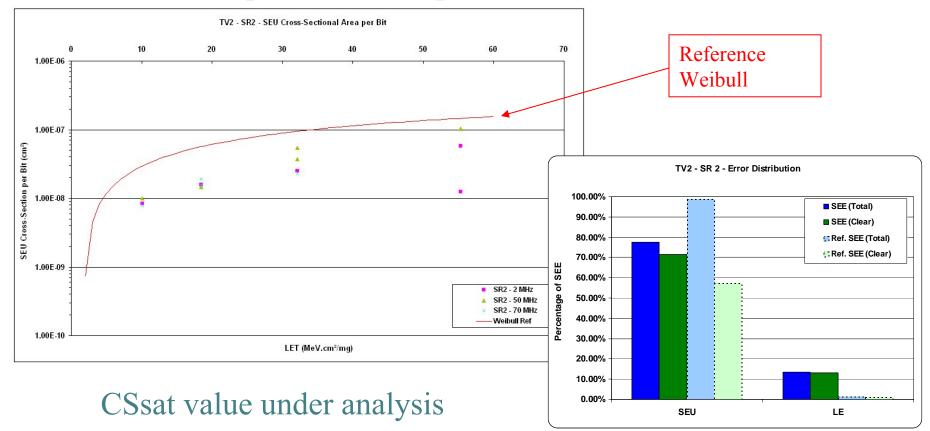
(7/14) - TV1 - SR PLL

30/47


Channels clocked by the PLL output

(8/14) - TV2 - SR 1

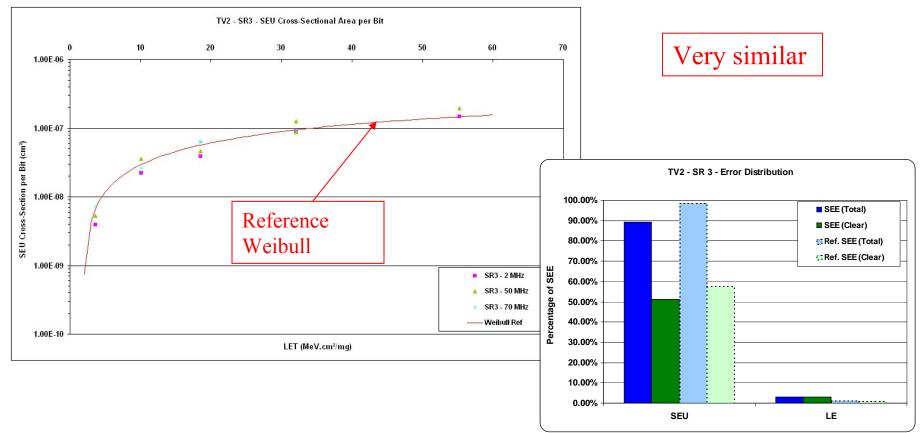
31/47


ESA - Microelectronics Presentation Days

(9/14) - TV2 - SR 2

32/47

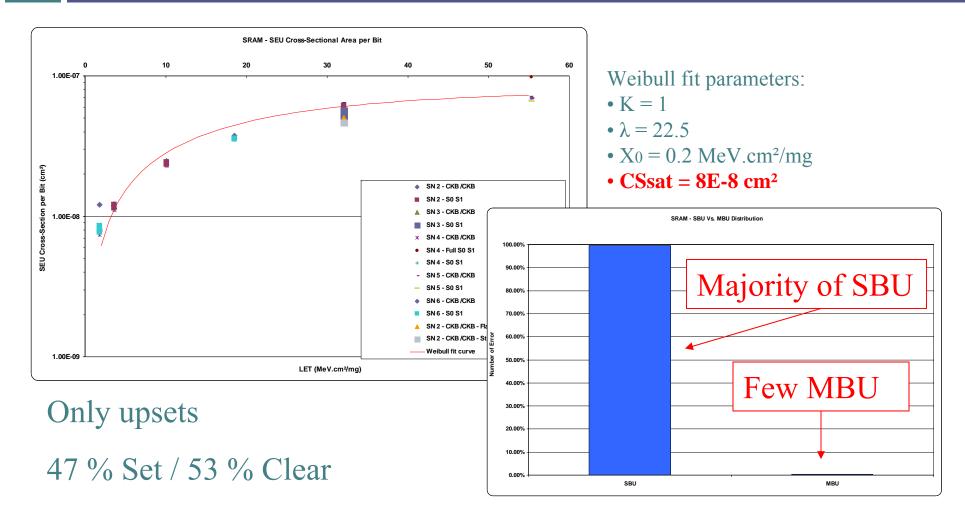
Channel with triplication of sequential cells and I/O Blocks



(10/14) - TV2 - SR 3

33/47

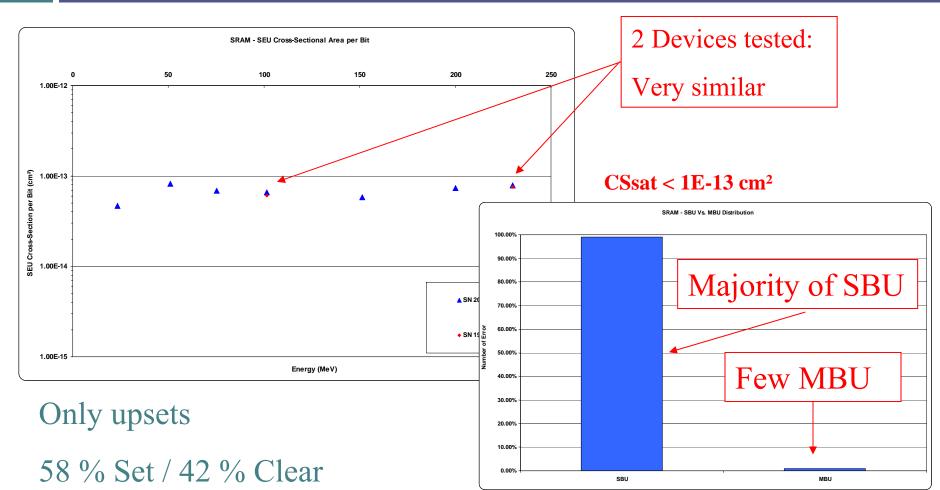
Channel with SET filtering (2 ns)



ESA - Microelectronics Presentation Days

(11/14) - SRAM - HI

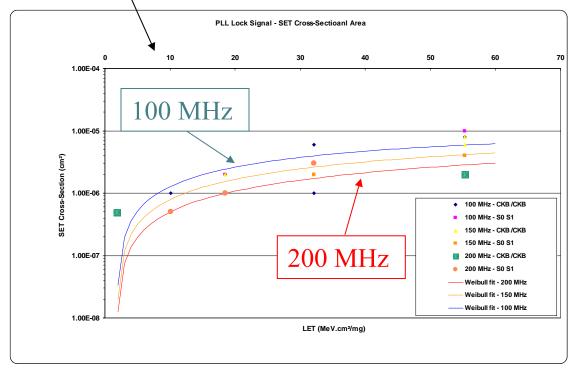
34/47



ESA - Microelectronics Presentation Days

(12/14) - SRAM - Protons

35/47


ESA - Microelectronics Presentation Days

(13/14) - PLL

Output clock is lightly sensitive to SEE

□ Lock signal is sensitive to SEE (SEFI, SET)

Weibull fit parameters:

- K = 1
- $\lambda = 60$
- $X_0 = 1.8 \text{ MeV.cm}^2/\text{mg}$
- CSsat = 1E-5 cm²

The clock output never stopped

ESA - Microelectronics Presentation Days

(14/14) - SEL & Flash

□ <u>NO SEL</u>

Vnom +10%, 125 °C, 55.3 MeV.cm²/mg, 5E6 p/cm²

- □ Flash is NOT sensitive to SEE
 - Configuration and User flash remained intact
- □ The Flash **programming part** is sensitive to:
 - **SEE**
 - SHE
 - Cumulated dose deposited by the cumulated fluence

Steps

- Background and Objectives
- □ Device overview
- Statement Of Work (SOW) requirements
- □ Test Vehicle designs
- □ Test conditions
- Radiation test results

Conclusion (1/2)

Irradiation characterization made on:

• A3PE3000L

39/47

- SEE mitigation methods (flash based FPGA)
- □ **No SEL** up to 55.3 MeV.cm²/mg, Vnom +10%, 125°C, 5E6 p/cm²
- □ Flash is not sensitive to SEE up to 55.3 MeV.cm²/mg
- □ Registers, SRAM, PLL and Global network
 - => sensitive to SEU and SET
 - Cross-Sections are established

Conclusion (2/2)

40/47

TV	Shift Register	Singularity	SEE Summary	
1	1	Reference	SEU (DFF)	
	2	Enable C-cells	SEU (DFF) + SET (enable)	
	3	Clear C-cells	SEU (DFF) + SET (clear)	
	4	C-cells in-between R-cells	SEU (DFF) + SET (C Cells)	
	5 to 8	DDR registers	SEU (DFF)	
	9 to 10	LVDS buffers	SEU (DFF)	
	11 to 14	PLL Clock	SEU (DFF) + Few SEE (PLL)	
2	1	R Cells TMR	Few SEU (DFF)	
	2	R Cells + I/O TMR	Under analysis	
	3	SET Filtering	SEU (DFF)	
	4	R Cells + I/O TMR + SET Filtering	Φ	
	5	R Cells + I/O TMR + C Cells duplication	Φ	
	6	Full TMR	Φ	

Final report estimated for June 2011

ESA - Microelectronics Presentation Days

THANK YOU!

Any question?