

# Study on Low Dose Rate Dependency Effect of Radiation

S. Duzellier, S. Soonckindt (ONERA) M. Muschitiello (ESA)

Contract #11407/95/NL COO10 ESA Report No: ESA\_QCA0822S\_C ESA Technical Officer: M. Poizat



THE FRENCH AEROSPACE LAB

return on innovation

Many bipolar linear parts exhibit Enhanced Low Dose Rate Sensitivity (ELDRS) effect

The standard and guidelines does not appropriately describe an ELDRS test method (standard dose rate)

defining an appropriate test approach for highlighting ELDRS effects on bipolar based technologies

comparing 36rad(Si)/h (LDR) with 360rad(Si)/h (HDR) in terms of component degradation

➢ is the component degradation exacerbated at extremely low dose rates (<36rad(Si)/h, ELDR)?</p>



# **ELDRS:** preliminary

- Degradation ↔ Qot, Nit
- Low Dose Rate
  Qot annealing (long) // degradation
  Qot, Nit : higher yield
- Bias effect (bipolar)
  - ✓ Active zones: frindging fields, OFF WC for degradation
  - ✓ Passive zones: can be opposite
  - ✓ Mostly low E field in oxides => ELDRS / Qot-Nit



# **Experimental details**

- Set of 9 device types
- 10 parts irradiated per dose rate, 5 biased / 5 unbiased (1 ref)
- irradiation steps: 5, 10, 15, 20, 30, 50, 70, 100krad
- annealing : 1 week/25°, 1 week/100°
  Help for interprating results
- **STEC** gamma facility
  - 360rad(Si)/h: May 2010 (HDR)
  - 36rad(Si)/h: June-October 2010 (LDR)
  - Comparison of LDR with HDR in terms of component degradation
- ONERA bunker (ELDR) : planned for 2nd term 2011 (≤10 rad(Si)/h)



# Samples (1)

#### 2x Operational amplifiers and 1x comparator

| OP15AZ    | AD  | Precision J-FET input<br>Op. Amp. | QMLV    | DIL8 |
|-----------|-----|-----------------------------------|---------|------|
| LM111     | TI  | Precision voltage comparator      | 883B    | DIL8 |
| RH1013MJ8 | LTC | Dual precision Op. Amp.           | Radhard | DIL8 |











#### 1x A/D converter and 1x PWM

| AD574ATD             | AD | 12-b A/D converter                                       | 883B                                  | DIL28 |
|----------------------|----|----------------------------------------------------------|---------------------------------------|-------|
| UCC1806J<br>(BiCMOS) | TI | Low-power dual-<br>output current-mode<br>PWM controller | 883B<br>(one single<br>diffusion lot) | DIL16 |



# Samples (2)

2x Precision references and 2x regulators

| AD584SH   | AD  | Pin programmable precision voltage ref. | 883B                                  | Can8  |
|-----------|-----|-----------------------------------------|---------------------------------------|-------|
| RH1021CMH | LTC | Precision 5V ref.                       | Radhard                               | TO5   |
| UC1834J   | TI  | High efficiency linear regulator        | 883B<br>(one single<br>diffusion lot) | DIL16 |
| JL117BXA  | NSC | Voltage regulator                       | 883B                                  | TO39  |











#### UC1834 results

slight DR effect ... not significant bias predominant (OFF = wc) Out of spec. > 10-20 krad(Si) (Vout) !!! Marginal parts (ex. lstb)



Input Bias Current (Vcm=1.5V)

Output Voltage Reference (-2.0V)



Average of parts (each group)



#### UC1834 results

LDR enhancement factor not significant ... but spec. exceeded for LDR (not HDR) and ELDR expected WC

"Annealing": 0 at ambiant, partial at 100°C



ONERA

THE FRENCH AEROSPACE LAB

Input Bias Current (Vcm=1.5V)



#### RH1013 and RH1021 results

Bias effect: ON = wcIb out of spec. at 50krad hdr, 70krad ldr



Bias effect : OFF = wcLineReg & Vout out of spec. at 10-30krad



THE FRENCH AEROSPACE LAB

Bias predominant, LDR enhancement not significant



# **AD574 results**

Complex DR & bias responses (parameter dependant) *Partial to complete annealing (parameter dependant)* Pass 100krad Out of spec. 20 krad (bip. offset)





## **OP15 results**



### LM111 results

12

Complex DR effect (LDR or HDR) enhancement factor: WC for Ib at LDR (out of spec. at 20-50 krad HDR, 10-15 krad LDR) Bias effect : par. dependant (ON WC if any)



THE FRENCH AEROSPACE LAB

Positive Input Bias Current (Vsupply=+/-15V, Vout=0V)



CNES/ESA EEE component radiation effects (R&D final presentation days 2011)

# LM111 results



# JL117 results



Adjust Pin Current (Vin=41.25V, lout=5mA)

ONERA

THE FRENCH AEROSPACE LAB

14

# **Summary of results**

| DR effect<br>(LDR wc)<br>Enhanc.<br>factor<br>+ | Complex DR effect (LDR or HDR)<br>enhancement factor: WC for Ib /LDR                        | ELDR<br>required | Bias effect: param.<br>dependant (ON WC)           | LM111            |
|-------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|----------------------------------------------------|------------------|
|                                                 | Complex DR effect<br>enhancement : param. depend. (Vos wc)<br>HDR WC for Is, Ios<br>Rebound |                  | bias effect:<br>param.dependant<br>(ON/OFF)        | OP15             |
| <i>≤</i> 1.6                                    | Complex DR (LDR or HDR) & bias effect<br>(param. dependant). Pass 100krad                   |                  |                                                    | AD574            |
| _                                               | Bias predominant, LDR enhancement<br>not significant                                        |                  | OFF WC                                             | AD584<br>UC1834  |
|                                                 |                                                                                             |                  | ON WC<br>OFF WC                                    | RH1013<br>RH1021 |
| CMOS-like                                       | HDR WC<br>(end of ir. at 30krad)                                                            | ELDR not         | ON WC<br>Partial/complete annealing<br>(par. dep.) | UCC1806          |
|                                                 | HDR WC<br>(out of spec. at 10krad)                                                          |                  | OFF WC<br>Complete annealing                       | JL117            |



# Conclusions

• Comparison of 36rad(Si)/h (LDR) with 360rad(Si)/h (HDR) in terms of component degradation

• Set of 9 Bipolar / BiCMOS devices

□ All device types exhibit DR effects with varying enhancement factor

□ 3x more sensitive with LDR + 4x not significant => ELDR required for investigating WC degradation

Rem: 360rad/h too low (comp. to 36rad/h) as HDR to determine ELDRS

- □ 2x « CMOS-like »: ELDR not required
- □ bias effect : device and parameter –dependant

Importance of performing xDR testing with ≠bias to approach an upper bound, or worst case, for device parameter performance

★ ELDR testing (2nd term 2011, ≤10 rad(Si)/h)) : DR for bounding degradation (device dependent)? .... the lowest possible with a reduced total dose....

