CNES/ESA final presentation days 28-29 March - ESTEC/ESA

Using TPA laser testing for characterizing the depth of SEE sensitive volumes

Frederic Darracq, Vincent Pouget

IMS Laboratory Nanoelectronics Group

CNRS, IPB, University of Bordeaux, France

frederic.darracq@ims-bordeaux.fr

Laboratoire de l'Intégration, du Matériau au Système CNRS UMR 5218

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

Generated carriers distribution

4

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

Experimental implementation

Laser source

- High peak intensity required for TPA \Rightarrow 100fs pulses
- Not many solutions for nanojoule femtosecond pulses above 1100nm
- OPA or OPO pumped by Ti:Sa oscillator or amplifier (>1150nm)
- Er fiber-based oscillator (1550nm)
- Adapt pulse selection method to intensity and repetition rate
- NIR optimized objective lenses
 - Laser pulse spectral width >10nm
 - Limit chromatic abberations

Experimental implementation

ATLAS

OPA pumped by regenerative Ti:Sapphire amplifier

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

3D Characterization of TPA spot

Knife-edge method using integrated diode

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

Applications to SEE testing

State of the art

- SET, McMorrow (TNS 2002, 2003)
- SEU, McMorrow (TNS 2004, 2005)
- SEL, McMorrow (TNS 2006)
- Empirical calibration, Schwank (RADECS 2010)

TPA at NRL

- Used to use 590nm for frontside SPA
- No wavelength available for backside SPA
- Switched to TPA at 1260nm for backside
- « Limit the amount of charge deposited »

Other TPA facilities

ATLAS (2006)

ims

University of Sevilla (2009)

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

Experimental methodology

Start with SPA mapping of sensitive areas

- TPA much more sensitive to focus and thickness variations ⇒ not suited for large area scans
- SPA scans performed at ATLAS-i (1064nm, 400fs pulses)
- TPA mappings of representative sensitive areas for different Z positions and pulse energies

SET : 3D scanning principles

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

SET

SET sensity Mapping of an LM324 AN

ims

TPA: Peak-to-peak amplitude > 2V, E=1nJ

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

SEL

SEL

To be presented at NSREC 2011 – Las Vegas

ims

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization

Application to SEE sensitivity testing

- State of the art
- Methodology

- SET experiment
- SEL experiment
- SEB experiment
- Summary and main recommendations
- Work in progress at IMS

CNES/ESA final presentation days 28 and 29 March 2011 – ESTEC/ESA

No SEB sensitive volume yet because of an occurrence of a destructive event during the mapping procedure.

Improvement of the protection of the device under test. SEB sensitive volume under investigation in the following weeks.

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

Results summary

- TPA can induce SET, SEL, SEB
- Demonstrated 3D resolution
 - For SEE volumes depth > 5µm

Probably improves lateral resolution

- Main experimental difficulties
 - Laser pulse-to-pulse energy instability around 10%
 - Intrinsic to OPA technology
 - Reliability of laser source (alignment, motors, crystals)
 - Incident energy measurement calibration and linearity
 - Backside surface quality is critical
 - SEB test setup issues

Main recommandations

Don't expect quantitative results from TPA

- To date, TPA can only measure relative variations of sensitive depth with respect to other parameters (position, supply voltage...)
- Start with SPA if sensitive area not previously localized
 - Scanning large areas sensitive to loss of focus
- Backside high quality preparation mandatory
 - Mirror polishing

- Thickness uniformity
- For synchronous testing, adapt test setup and acquisition method to sync with 1kHz laser clock

Two Photon Absorption (TPA) technique

- Principle
- Experimental implementation
- Characterization
- Application to SEE sensitivity testing
 - State of the art
 - Methodology
 - SET experiment
 - SEL experiment
 - SEB experiment

- Summary and main recommendations
- Work in progress at IMS

Work in progress at IMS (1/4)

3 PhD Thesis related to TPA

- Kai SHAO
 - Using TPA for improved resolution in failure analysis
 - Modeling, characterization, FA case studies

Adele MORISSET

- Development of new optical components and methods for non-linear imaging of integrated circuits
- Modeling, experimental development

Nogaye MBAYE

- Application of laser testing to recent power technologies (SiC, GaN)
- Use two photon for stimulating wide bandgap materials

Work in progress at IMS (2/4)

Modeling

- Currently evaluating MEEP
 - MIT open source framework for FDTD simulation
- Many effects to consider
 - Non-linear absorption
 - Kerr effect (self focusing)
 - Self phase modulation
 - Intrinsic free carriers absorption
 - Generated free carriers induced index variation
 - Generated free carriers induced absorption (self absorption)
 - Intrinsic dispersion
 - Self induced dispersion
 - Chromatic abberations
- Some physical parameters not found yet in litterature
 - To be measured

. . .

Work in progress at IMS (3/4)

Experimental developments

- 65nm test vehicle including many different structures
 - TPA spot size characterization
 - Impact of ageing on SEE sensitivity
- Acquisition of a new laser source for TPA
 - Fiber technology : much more stable output energy (1%)
 - Real single-shot capability
 - Oscillator, min 1MHz repetition rate
 - Easier acquisition synchronisation and averaging
- Development of a new electrical test bench for SEB
- New energy calibration setup to improve linearity and reproducibility

Work in progress at IMS (4/4)

- Development of fiber compoents to transport femtosecond pulses
 - In replacement of free space propagation
 - Much more stable beam pointing and spot size
 - More secure

- Final objective: integration into PULSCAN systems
- TPA using visible (green and blue) beams
 - SEE in wide band-gap devices

