SEGR/SEB Radiation test Method Study Presentation of Results & Analysis following Heavy ions **Irradiations** ESA contract n° 22328/08/NL/PA A. CARVALHO*, Ch. BINOIS*, R. MANGERET*, M. MARINONI* & V. FERLET-CAVROIS** EADS-ASTRIUM SAS **ESA/ESTEC Presentation to CNES/ESA Days** (March, 29th 2011

Description of the study

- To study Post-Irradiation Gate Stress Test (PIGST) method for SEGR characterization through electrical and heavy ion testing
 - Characterization of studied devices for SEGR under heavy ion beam and during PIGST

2. Investigation of 3 different approaches for Gate Stress

- Dig PIGS
- Time To Breakdown (TTBD)
- and Charge To Breakdown (QTBD)
- 3. Study of the breakdown behaviour of devices through accurate measurements
- Correlation of observed failures during PIGST and during heavy ion irradiation

Two different N-channel MOSFET types selected

	Part Type	2SK4219 (FUJI)	Part Type	HG0K (STM)
	Characteristics	100V N-Channel	 Characteristics	100V N-Channel
	Package	SMD0.5	 Package	TO-3
	Die area	~12 mm ²	Die area	29 mm²
A 11-1	Gate oxide thickness	not provided	Gate oxide thickness	47nm
All the space you r	need			

Chronological events

- May 2009: Kick-off
- June 2009 : 1st HI testing at UCL facility
- May 2010: Follow-on meeting on ESA premises
- June 2010: Key personnel replacement
- July 2010: 2nd HI testing at UCL facility
- April 2011: Laser testing at ASTRIUM-IW facility
- May-June 2011: 3rd HI testing at UCL facility

Experimental setup presentation (1/5)

The original setup

- was designed in 2004
- was used for the 1st test campaign in June 2009
- needs to be improved for
 - a better accuracy on Igss measurement
 - drain charge collection detection
 - Vgsth measurement
 - IDss on line
 - PIGS range increase

A new Test setup has been developped and used during the 2nd irradiation campaign in July 2010

Experimental setup presentation (2/5)

New Test setup description

Remote control computer

Experimental setup presentation (3/5)

Test system characteristics

- 8 test slots
- Can hold P and N channel up to 600V Vds and +/-100V Vgs
- On line measurement of Igss (10pA to 100mA) and Idss
- SEB detection and Drain charge collection integrated acquisitions
- Integrated Vgsth measurement for N channel (P to be added)
- Embedded Processor and FPGA (RTOS for short time response and local tasks management)
- Remote controlled operation
- Integrated autotest to check device and tester integrity before irradiation (a not connected device is seen unsensitive)

All the space you need

Date - 6

Experimental setup presentation (4/5)

Focus on Integrated charge collection system

Experimental setup presentation (5/5)

QTBD & TTBD board

16 test slots

Visual information for device health state

QTBD or TTBD selectable per slot

Experimental Results from WP2100

✓ Characterization of SOA for SEGR

All the space you need

Date - 9

Experimental Results from WP2100

1st irradiation test campaign performed at UCL facility

Heavy Ion specie	HI energy [MeV]	Range [µm Si]	LET [MeV.mg.cm ⁻²]
⁸³ Kr ²⁵⁺	756	92.0	31.0
¹³² Xe ²⁶⁺	459	43.0	67.7

Characterization of SOA for SEGR

SEGR of PIGS failure observed only for fluences higher than TE+4 p/cm²: Multiple impacts suspected → "SEGR Study on Power MOSFETs: Multiple Impacts Assumption" D. Peyre et al., IEEE TNS Vol 55, Iss 4, pp. 2181-2187, 2008

Experimental Results from WP2200

Intrinsic breakdown voltage assessment

Charge collection at drain level measurement

All the space you need Date - 11

Experimental Results from WP2200 (1/7)

2nd irradiation test campaign performed at UCL facility

Heavy Ion specie	HI energy [MeV]	Range [µm Si]	LET [MeV.mg.cm ⁻²]
$^{132}Xe^{26+}$	459	43.0	67.7

Intrinsic breakdown voltage of the gate oxide assessment (1/3)

PIGST evolution at higher voltage levels explored until gate rupture occurred. PIGS test repeated by increasing the maximum voltage (in + and - polarity) in small steps

Voltage threshold for leakage current onset is much higher than spec limit of device (20V)

Experimental Results from WP2200 (2/7)

Intrinsic breakdown voltage of the gate oxide assessment (2/3)

Extended PIGS levels defined after this evaluation:

	2SK4219	HG0K
Standard specification	Vgs = +20V/-20V	Vgs = +20V/-20V
Experimental Target Leakage	V_{0} = +60V/-45V	V_{0} = +30V/-24V
onset (+100nA/-100nA)	180 10017 101	
Experimental Target limit	Vgs = +65V/-60V	Vgs = +36V/-30V
leakage	Typical current 200nA/-300nA	Typical current 100nA/-120nA

Experimental Results from WP2200 (3/7)

 Intrinsic breakdown voltage of the gate oxide assessment (3/3)

Fuji parts have far higher intrinsic breakdown voltage (Vbd) than STM parts

All the space you need

Date - 14

Experimental Results from WP2200 (4/7)

Charge Collection at Drain Level: Flux Effect (1/3)

Limiting the flux below 50 ions.cm⁻².s⁻¹ gives a reasonnable detection ratio of the charge collection events

Experimental Results from WP2200 (5/7)

Charge Collection at Drain Level: Flux Effect (2/3)

The lower the flux, the higher the charge collection events cross section

Even in over-blocking condition on Vgs, charge collection measurement is still possible

Confirmation with STM parts that fluxes below 50 ions.cm⁻².s⁻¹ give reasonnable detection ratio of the charge collection events

Experimental Results from WP2200 (6/7)

Charge Collection at Drain Level: Flux Effect (3/3)

2 Probable causes of issue

Experimental Results from WP2200 (7/7) Breakdown Vgs during PIGST: Fluence Effect

Conclusion

- Extended PIGS levels have been defined and leakage current onset determined
- Charge collection at drain level can be used as a smart checking tool during irradiation (Beam presence, characteristics and dosimetry check)
- Charge collection at drain level can be used also under over-blocking conditions
- Breakdown Vgs during PIGST depends on cumulated fluence (Multiple impact suspected)

Work to be performed

- Completion of SOA for SEGR
- QBD and TBD tests on irradiated parts and pristine parts (as reference)
- Intrinsic breakdown voltage versus breakdown voltage during PIGST: is there a link?
- Laser testing (Charge collection circuit calibration)
- Confirm the results by a statistical study

