FPGAs for Space - an overview

Fredrik Sturesson ESA/ESTEC QCA presentation day 23 January 2007

Outline

- FPGAs available today
- Comparing radiation performance
- > Upcoming
- What do we miss & Some rare effects
- Conclusion

This is a comprehensive summary. Presented data is taken from presentations, papers and other sources.The data can only be used for orientation purpose.

Main FPGA Vendors for Space

FPGAs for Space - an overview, F.Sturesson

FPGA devices for Space

Red cursive not available yet (planned 2007)

Vendor	Family	Parts	Packages	Max IOs	RAM	<u>FF</u>	Logics	<u>Others</u>
Atmel	AT40K 0.35 µm	AT40KEL040 AT40KFL040	MQFPF160, MQFGF256	233	18 k	3 k	2,3 k	5V tolerant I/O
	ATF280E	ATF280E	MQFGF256 MCGA472	308+	115 k	14 k	28 k	Cold soare
Aeroflex/UTMC	Eclipse 0.25 µm	UT6325	CQ208, CQ288 CLGA484	310	55 k	3,1 k	1,5 k	
Actel	Act 3 ^{0.8 µm}	RT14100	CQ256	228	None	0,7 k	1,4 k	5V I/O
	RTSX-SU 0.25 µm	RTSX32-SU RTSX72-SU	CQ208, CQ256 CCGA624 CCLG256	224 353	None	1,1 k 2 k	1,8 k 4,0 k	3,3V & 5V I/O
	RTAX-S 0.15 µm	RTAX250S RTAX1000S RTAX2000S RTAX4000S	CQ84,CQ208, CQ256, CQ352 CCGA624, CCGA1152,CCGA1272	248 516 684 840	54 k 162 k 288 k 553 k	1,4 k 6,0 k 10,8 k 20,2 k	2,8 k 12,1 k 21,5 k 40,3 k	
Xilinx	Virtex-2 0.15 µm	XQR2V1000 XQR2V3000 XQR2V6000	FG458, BG575, BG728 CG717, CF1144	328 516 824	720 k 1,7 M 2,6 M	10.2 k 28,7 k 67,6 k	11.5 k 32,3 k 76,0 k	8-12 DCM 40-144 Multiplier blocks
	Virtex-4 ^{90 nm}	XQR4VLX200 XQR4VSX55 XQR4VFX60 XQR4VFX140	CF1144, CF1509	960 640 576 768	6,0 M 5,8 M 4,2 M 9,9 M	178 k 49 k 51 k 126 k	200 k 55 k 57 k 142 k	DCM, PMCD, PowerPC, DSP, RocketIO
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC								

Comparing radiation performance

- All FPGAs address TID and SEL reasonable well
- Heavy ion data primary covers
 - Static SEU User flip-flop
 - Dynamic SEU (SET)
 - Static SEU User RAM
- Proton data available for some devices but not all

Radiation Performance Static SEU – User Flip Flops

LET [MeV-cm2/mg]

FPGAs for Space - an overview, F.Sturesson

Radiation Performance Dynamic SEUs - In circuitry Transients (SET) RT14100 static FF 1,E-05 Immature test methods Narrow lines = Static SEUs section [cm2] 1,E-06 UT6325 120MHz (mostly static 1,E-07 SEUs) RTAX-S AT40K (logics or cfg?) 1,E-08 RTSX-S **Bit cross** RTSX-SU 100Mhz 1,E-09 (only FF?) 1,E-10 RTAX-s 150MHz 1,E-11 Commercial Actel 10 20 30 40 50 60 ()ProASIC3 Invertercell LET [MeV-cm2/mg]

FPGAs for Space - an overview, F.Sturesson QCA Presentation day - 23/1/2007 Page 7

Radiation Performance Static SEU – User RAM

LET [MeV-cm2/mg]

FPGAs for Space - an overview, F.Sturesson

Radiation Performance Static SEE – Xilinx Virtex-II

LET [MeV-cm2/mg]

Add to this, a lot of papers and ongoing work in:

Dynamic testing, Fault injection and mitigation schemes

FPGAs for Space - an overview, F.Sturesson

Upcoming

> 2007

- Xilinx Virtex-4 devices available
 - Test on commercial die promising, similar to Virtex-II
 - Radiation test planed on rad tolerant die next month
 - Multi upsets might be an issue for XTMR mitigation
- Atmel ATF280 in fab, radiation test planned before summer.
- Actel RTAX4000-s now available
- 2008 and later
 - Xilinx works on SIRF FPGA
 - radiation hard re-configurable FPGA.
 - Actel plan to sell ProASIC-3 as RT (no hardening)
 - Expected 2008.
 - Radiation testing is ongoing.
 - Aims for low earth and short missions, No ITAR.
 - Actel works on radiation hard flash based FPGA
 - ProASIC-G4.
 - Expected 2010-2012
 - UTMC/Aeroflex might go for next generation FPGAs

What do we miss?

Proton test data for:

- Actel RTAX-S
 - Dynamic SEE (LETth ~10 MeV-cm2/mg)
 - SEU RAM
- Actel RTSX-SU, Dynamic SEU (LETth ~15 MeV-cm2/mg)
- Atmel AT40K, SEU configuration data (LETth ~10 MeV-cm2/mg)
- Heavy ion test data for:
 - Atmel AT40K; SEU user flip-flops
 - only data taken at 56 MeV-cm2/mg,
 - Atmel expect LETth similar to RAM-cells (~15MeV-cm2/mg)

FPGAs for Space - an overview, F.Sturesson

(1/2)

What do we miss? (2/2)

- Better testing methods for Dynamic SEUs (SET):
 - The data available today is not conclusive
 - Not possible to transfer data to an application design.
- SEU/Memory mapping of RAMs and configuration memories
- TID Testing with characterisation of power up behavior
 - Power up failures observed for Actel A14100 and Xilinx Virtex-1
 - Power up is critical for FPGAs
- Independent Radiation testing
 - Most given data is coming from the manufacturers

Some Rare Effects

Things they never talk about

- Multibit upsets (MBU):
 - Observed for Actel RTAX-s RAMs
 - Need to be addressed for mitigation schemes?
 - Observed for Xilinx Virtex-2 and Virtex-4
 - Need to be addressed for XTMR mitigation?
- SEDR (Single event Dielectric Rupture)
 - Observed for all Actel antifuse FPGAs at high voltage and LET

> TID

- Actel RTSX32-SU show temporary functionality loss at~60 krad
 - Actel states it is a test artifact due to high dose rate. This has not been confirmed in test.

Rare Multi events

- Observed in SEU testing by Actel at high LET
 - Effect is taken for "facility noise", which is nonsense.

Conclusion

- All FPGAs address TID and SEL reasonable well
- A full spectra of SEE performance, from <u>almost SEE</u> free to very SEE sensitive
 - Case by case must decide whether mitigation schemes is needed or not and to which extent.
- Dynamic SEUs (SET) must be considered
 - It is reasonable to assume that critical high speed applications in the future always will need to address some kind of mitigation.
- Today and upcoming FPGAs are very complex
 - Accelerator testing on test designs can only be used as guidelines
 - Flight applications are recommended to be validated in accelerator

