

SEE testing of Advanced Memories - Part 1

- Test approach and hardware evolution from SDRAM to DDR2
- Sample preparation

This work has been performed under ESTEC Contract No. 13528/99/NL/MV, COO-19

FX. GUERRE
G. LEWIS
HIREX Engineering
Toulouse - France

Plan

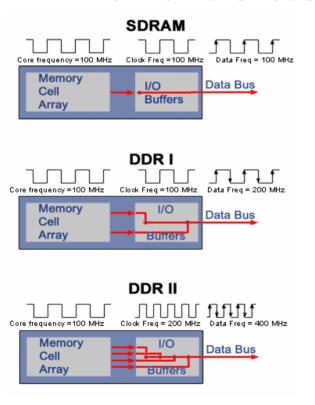
- Work context
- Overview of DRAM technologies
- SEE test approach of SDRAM, DDR and DDR2
- Application to SDRAM
- Evolution to DDR2 SDRAM
- Sample preparation

Context of the work

- To answer ESA needs on evaluation of new generations of SDRAM, DDR, DDR2
- March 2006 → Kick-Off of a ESA contract to evaluate SDRAM, DDR and DDR2 memories to SEE
- June 2006 → SEE tests of SDRAM in UCL/HIF
- November 2006 → SEE tests of DDR2 in UCL/HIF
- November 2006 → SEE tests of DDR2 in Los Alamos/LANSCE (outside ESA contract)
- January 2007 → first presentation of DDR2 preliminary results at QCA Day 2007

Overview of SDRAM technologies (1/2)

- Definition
 - ◆ SDRAM → Synchronous Dynamic Random Access Memory
 - ◆ DDR SDRAM → Double Data Rate SDRAM
 - ◆ DDR2 SDRAM → upgraded DDR


Main common points

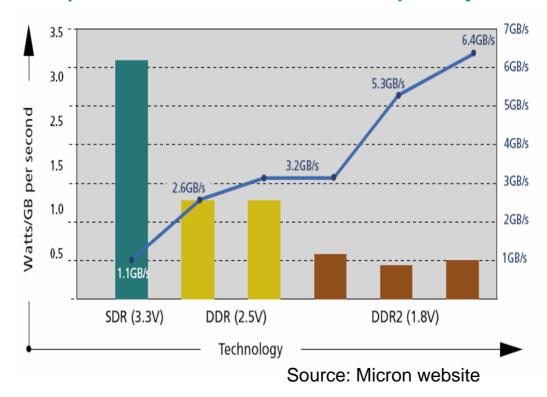
- Synchronous
- ◆ Volatile memory → periodic refresh needed
- Access is burst oriented
- ◆ Address defined by a row, column and bank
- Auto Refresh and Self Refresh modes

Overview of SDRAM technologies (2/2)

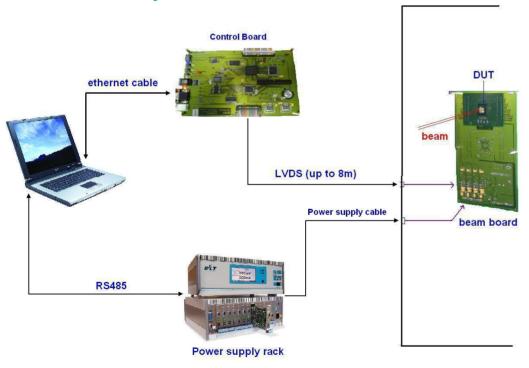
Main differences

- ◆ 3.3V
- ◆ TSOP package
- ♦ 133 MHz max
- ◆ 2.5V
 - ◆ TSOP and FBGA packages
 - ◆ 90 MHz min, 200 MHz max*
 - Differential signals

- ♦ 1.8V
- ◆ FBGA package
- ◆ 125 MHz min, 333 MHz max*
- ◆ Differential signals

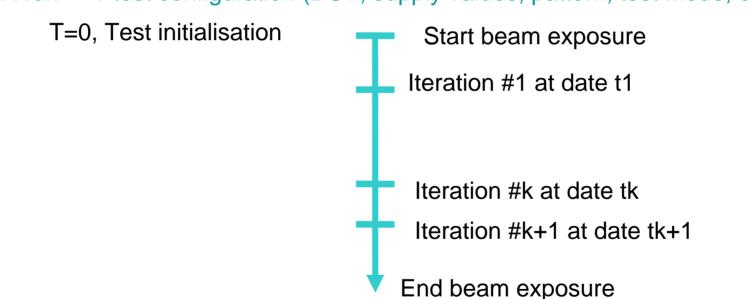

+ data rates, capacities increased... due to new generations

Interests of new generations of SDRAM for space applications


- Obsolescence
- Consumption

Capacity, data rate

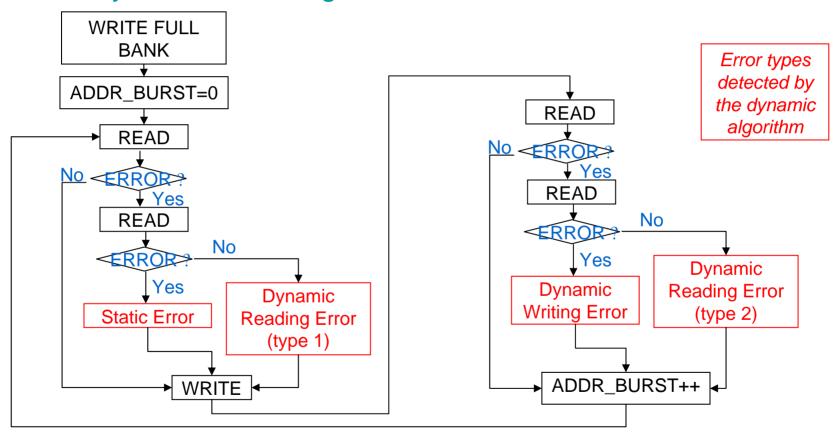
 Current Hirex digital test system



- Compatible with most of facilities (neutron, protons, heavy ions, alphas, laser)
- 120 I/Os up to 100MHz from 0.8V
 to 5V
- 4 supplies up to ±5V/1A with μs
 latchup processing and recording
- more than 100K SEE error records
- ♦ Heating up to 125°C
- TCP/IP@10M network
- Robust hardware & software
- Fully remote configuration

What is a SEE run?

A run = 1 test configuration (DUT, supply values, pattern, test mode, etc.)


Note: a common static iteration is a bank(s) write(s), an exposure time while refreshing and a bank(s) read(s)/comparison(s)

- Run Test Modes
 - Static (use of a shutter during write and read)
 - Consecutive write from 1 to 4 banks
 - Refreshing during exposure time (self or parametric auto refresh)
 - Consecutive read of selected banks
 - Idem for the next iteration
 - ◆ Dynamic
 - Consecutive burst access of a selected bank with a no iteration time
- Pattern (ALL0, ALL1, Checkerboard and inverted...)

Dynamic mode Algorithm

⇒ Detects both static errors and dynamic errors

- Protections against entering into an unknown state
 - ◆ For the DUT(1/2)
 - Use of a photographic obturator for static tests during Write and Read (automatically controlled)

⇒ Physical protection (heavy ions only)

- Protections against entering into an unknown state
 - ◆ For the DUT(2/2)
 - Automatic detection of unknown state during read
 - Reload of the memory registers
 - Reread of the memory without rewriting it
 - if unknown state can be recovered by software → Count a "Soft SEFI"
 - if unknown state can only be recovered by power off the DUT (automatic power OFF and re-power ON) → Count a "Hard SEFI"
 - ◆ For the control circuitry under harsh environment (protons, neutrons)
 - Periodic reload of the FPGA which drives the memory
 - ⇒ Software protections

- Detected errors types
 - ◆ SEU: Single Bit error
 - MCU: Multi Cell Error (scrambling info needed)
 - MBU: Multi Bit Error (in the same word)
 - ◆ Row/Column error
 - Read errors, Write errors, Cell errors
 - Soft SEFI (registers modification possible)
 - Hard SEFI (when power reset is needed)
 - ◆ SEL

Application to SDRAM and DDR2

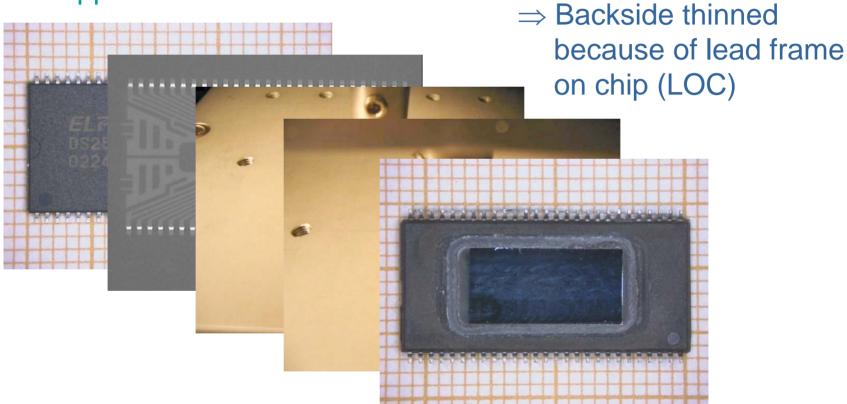
SDRAM

◆ Current Hirex test system based on a Xilinx FPGA Virtex2

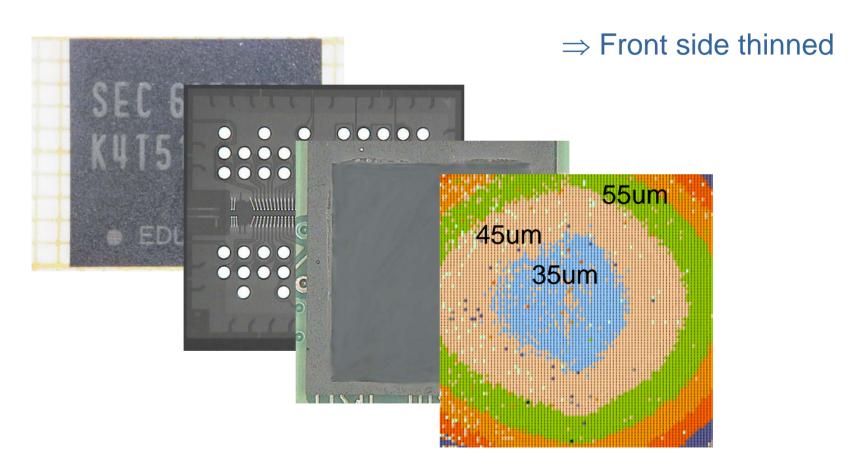
DDR2

- ◆ Current Hirex test system
- + one additional board based on a Xilinx FPGA Virtex4

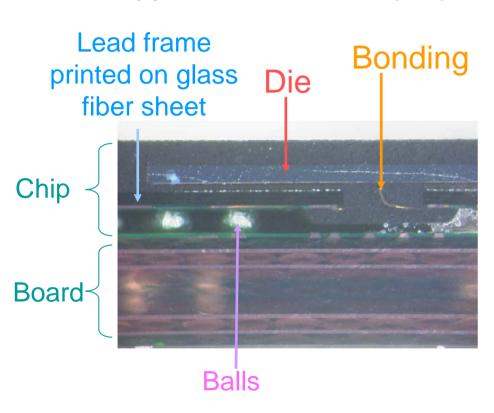
Performances of the test systems

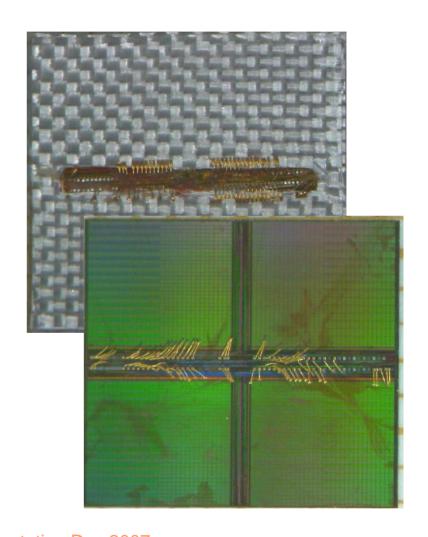

Test SEE of	SDRAM	DDR2	DDR2	DDR2
Campaign	UCL - June	UCL - Nov.	Los Alamos -	Expected in
	2006	2006	Nov. 2006	2007
Frequency	25 MHz	166 MHz	200 MHz	200 MHz
% accessing time	-	~30%	~25%	~50%

- Using Hirex Physical Analysis Lab resources (equipped for Construction Analysis, DPA, Failure analysis)
- Preparation of SDRAM/DDR2 memories for heavy ions radiation testing:
 - Chemical etching (jet etcher)
 - Die thinning (ASAP1 / mechanical lapping)



Application to SDRAM




Application to DDR2 (1/2)

Application to DDR2 (2/2)

Conclusion

Achievements

- ◆ SEE tests of 3 SDRAM and 2 DDR2 (heavy ions and neutrons)
- ⇒ First results for DDR2. See « SEE testing of Synchronous Dynamic RAM Part 2 » presentation
 - Conception and validation of a prototype for an upgraded test system
- ⇒ Allow SEE tests of new generations of advanced memories (DDR2 up to 400Mb/s, RLDRAM, QDRAM...)
 - Validation of the different error detection and process (Soft SEFI, Hard SEFI...)

Next

- ◆ Design and production of improved ASERT test board (4 power supplies, 488 I/Os, up to 500 MHz for FPGA clock speed...)
- ◆ In depth radiations tests on different DDR2 memories