

CENTRE NATIONAL D'ÉTUDES SPATIALES

Compendium of 2006 radiation evaluation on commercial memory

CNES – January 24th 2007

Jean BERTRAND – VLSI Expert – DCT/AQ/EC

Agenda

- How to deal with SDRAM obsolescence :
 - SEE test results on two monolithic 512Mb SDRAM.
 - Overview of DDR-SDRAM project.
- Overview of NVRAM radiation study.
- Short description of new integrated SEE tester for memory.

How to deal with SDRAM obsolescence ?

- SDRAM market share is on decline (slower than foreseen nevertheless).
- Monolithic 1Gb SDRAM will never exist at all.
- Only few major manufacturer are still involved in SDRAM :
 - Elpida (ex-Hitachi)
 - Samsung (but not any new introduction since 2004)
 - Qimonda (ex-Infineon)
 - Micron
- Natural alternative is to follow computer market through using DDR-SDRAM memory. But this is not so obvious :
 - SDR-SDRAM and DDR-SDRAM aren't compatible in term of electrical interface, package, frequency.
 - DDR-II will replace DDR-I in near future.

SEE test results on two monolithic 512Mb SDRAM (1/4)

Tested Devices :

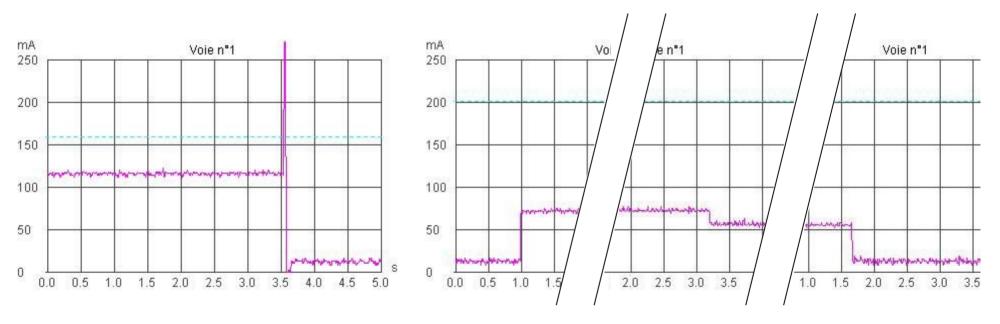
Manufacturer	Туре	Features	package
MICRON	MT48LC64M8A2 TG-75	512Mb, 64M x 8bits, 3.3V	TSOP-54
INFINEON	HYB 39S512800AT-7.5	512Mb, 64M x 8bits, 3.3V	TSOP-54

Cocktail used (GANIL W47-2006 / UCL W26-2006):

lon	Energy (MeV)	Range (µm Si)	LET MeV(mg/cm ²)
¹⁰⁸ Pb ⁵⁶⁺	1624	258	72.6
⁸³ Kr ²⁵⁺	756	92	32.4
⁵⁸ Ni ¹⁸⁺	567	98	20.6
⁴⁰ Ar ¹²⁺	372	119	10.1
²² Ne ⁷⁺	235	199	3.3
¹³ C ⁴⁺	131	266	1.2

SEE test results on two monolithic 512Mb SDRAM (2/4)

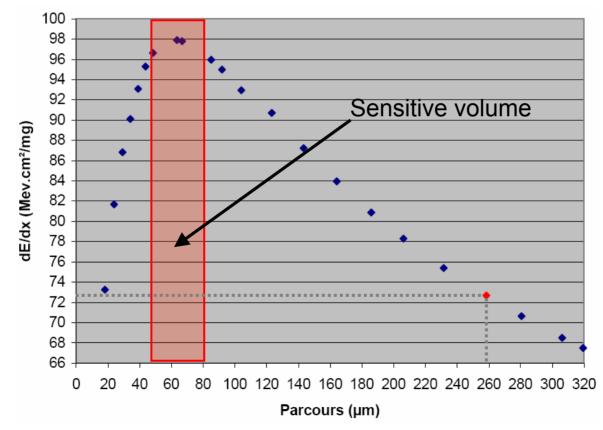
- Samples are irradiated backside, thinned down to 60/80µm.
- Sensitivity to SEU, MBU, SHE, SEFI and SEL have been assessed



SEE test results on two monolithic 512Mb SDRAM (2/4)

Micron MT48LC64M8A2TG :

- No SEFI detected at all.
- No SEL at LET 32,5 for 1.10⁷p/cm² / 4 SEL at LET 72,4 for 2,7.10⁶p/cm²
- Some current increase, probably µSEL and/or bus conflict.


True SEL

Current variation during static tests

Digression : LET value of Ganil ion beam

The beam characteristics reported here for the Ganil test is LET = 72,4MeV(mg/cm²); Range = 258µm. But in reality, considering the dE/dx curve, LET value in sensitive volume is around 97MeV(mg/cm²)!


cnes

SEE test results on two monolithic 512Mb SDRAM (3/4)

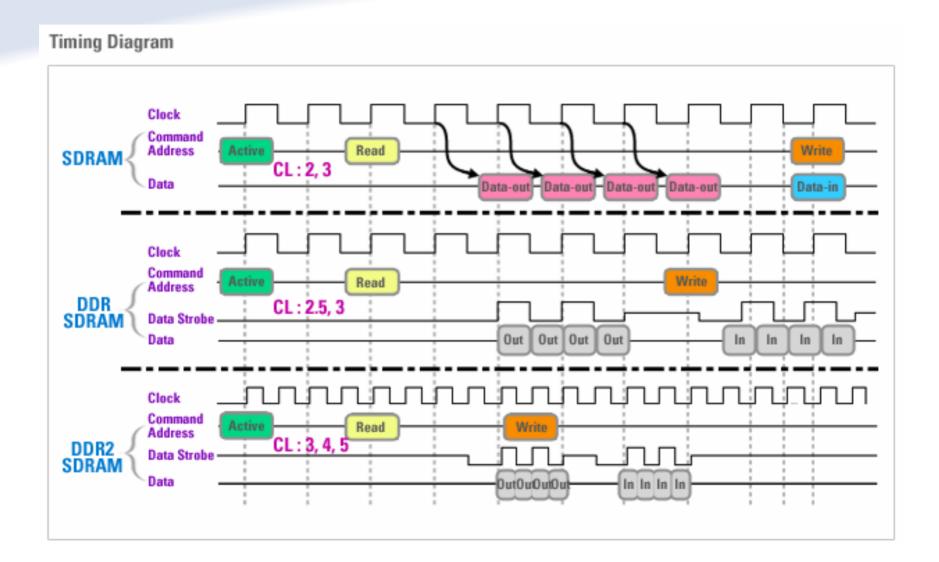
Micron MT48LC64M8A2TG (cont.) :

- High sensitivity to SEU LETth \approx 3,3 / Sigma_{sat} \approx 10⁻⁹cm²/bit
- Some SHE detected by the tester but always in clusters and it disappear immediately after init (without power cycling) => suspected cause is SEU in periphery.

SEE test results on two monolithic 512Mb SDRAM (4/4)

Infineon HYB39S512800AT :

- This device have revealed an relatively high sensitivity to Latch-Up : LETth ≈ 10MeV(mg/cm²). For 5.10⁶ p/cm²; LET 20,6 => 19 SEL
- Event rate in orbit will be not so high but this device cannot be used without SEL mitigation. For a solid state recorder (1000's of devices) this is unacceptable.
- And, if you are not convinced :
 - This part is also sensitive to SEFI with LETth ≈ 10MeV(mg/cm²)
 - Infineon no longer involved in SDRAM, new name is Qimonda...


COLES Is DDR-SDRAM the solution for the futur ?

First we have to compare key feature of DDR-SDRAM and SDR-SDRAM

Key Feature

	SDRAM	DDR	DDR2
Vdd/Vddq	3.3V	2.5V	1.8V
Package	54 TSOP-II	66 TSOP-II 60 BGA	60/84 BGA
Bit Org.	×4, ×8, ×16		
Clock Freq	~167 Mhz	100~200 Mhz	200~400 Mhz
Data rate	~167 Mtps	200~400 Mtps	400~800 Mtps
Interface	LVTTL	SSTL_2	SSTL_18
Prefetch	N/A	2	4
Burst Length	1, 2, 4, 8, F/P	2,4,8	4,8
Strobe	No	Yes	Yes
Minimum clock Freq	No	~77MHz	~125MHz

CINES Timing comparison SDR / DDR / DDR2

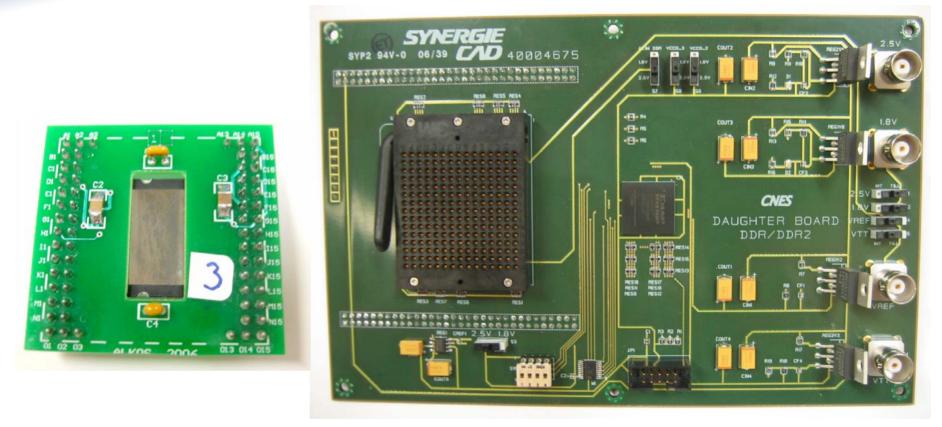
DDR-SDRAM Project

Based on French coordination in the frame of Multi-partnership it is assumed that we **have to** characterize DDR. But :

- In the time being, DRAM's are no longer the nominal way to build SSR. Flash NAND are considered.
- In a first time, DDR2 are not considered because of higher min clock frequency and only available package is FBGA => the step is to high !

After Market Study selected devices are :

- Samsung K4H1G0838M : Purchase problem because minimum buy is 1000# and unit price ~200€ => cancelled !!!
- Micron MT46V128M8 : A trainee make the adaptation of interface between the device and the memory tester (TIMES).


Daughter Board for DDR testing with the TIMES

Very complex board due to :

- TIMES deliver only LVTTL, DDR interface is SSTL2 => we must use a Xilinx Spartan 3 FPGA as level shifter !
- Test have to be performed at more than 77MHz when Tester have only 48MHz clock => Spartan 3 'DCM' allow to multiply clock in order to reach 96MHz.
- DDR require routing with adapted impedance => 64x 22Ω matching resistor !
- DDR require accurate voltage reference for V_{ref} and V_{TT} (1,25V +/-0,015V) => use of dedicated component 'DDR Termination' (LP2996 from NS)
- On the other hand, this 'super' daughter board will be able to test DDR2 without any hardware modification, just VHDL and a few switches to change.

Daughter Board for DDR testing with the TIMES

In the time being, the daughter board has not been debugged due to trainee lack of time.

DDR-SDRAM Project : Phase 2

By 2007, if budget is available, it is planned to make a new DDR stack in a 3D-Plus package (Hybrid assembly qualified by ESA and CNES). The main objective are :

- ◆ 4 to 8 devices stacked, 1Gb DDR1 in TSOP66 and FBGA.
- Electrical and thermal characterization of elementary devices outside manufacturer specification (mil. temp. ; lower clock frequency)
- Radiation complement if necessary.
- Stack manufacturing and electro-thermal characterization of the stack.
- Feasibility study for 'added value' into the cube in order to be more 'user friendly'. For example : level shifter LVTTL I SSTL2 ; load resistors ; voltage reference.

Overview of NVRAM radiation study (1/3)

Study performed by ONERA-DESP (T. NUNS) under CNES contract. Objective is to investigate radiation (TID and SEE) behavior of Non-Volatile RAM in order to find the more promising one's.

First, a market study have been conduce. Almost all the major memory manufacturer have an NVRAM project. But only a few of them have a credible offer in term of maturity.

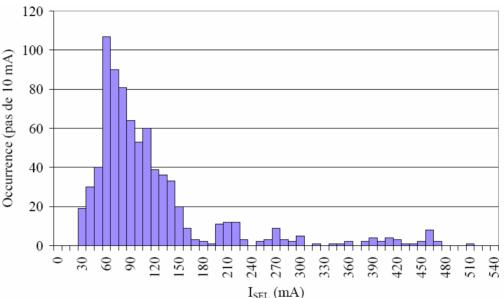
Technology	Manufacturer	Targeted capacity
Magnetorestive (MRAM)	Freescale, NEC/Toshiba, Cypress, Infineon, IBM	4Mb → 16Mb
Ferro-electric (FRAM)	Ramtron, Toshiba, Matsushita, Fujitsu	1Mb → 64Mb
Chalcogenide (OUM)	Ovonyx, BAE System, Samsung, ST Micro.	4Mb → 512Mb
Nanotubes	Nantero	10Gb

Overview of NVRAM radiation study (2/3)

Two technology have been selected : MRAM from Freescale and FRAM from Ramtron.

Ramtron - 1Mb FRAM - FM20L08 :

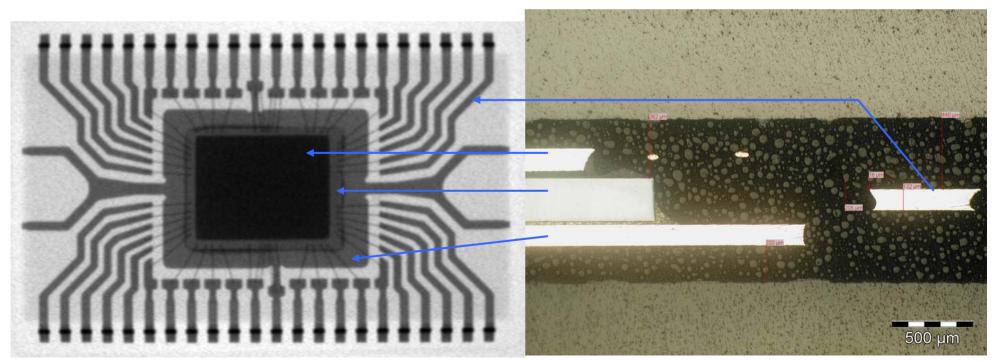
- SEL LETth ≈ 23MeV(mg/cm²); Sigma_{sat} ≈ 8E-4cm²/dev. (true SEL only)
- Memory array is immune to SEU when device is OFF. Very few errors at LET>45 when device is irradiated in static mode. This sensitivity is probably due to SEU in periphery who activate the erase mechanism.
- Irradiation in Dynamic mode show SEU LETth ≈ 6MeV(mg/cm²); Sigma_{sat} ≈ 1.5E-3cm²/dev.
- MBU are very often in cluster, it confirm that most of the sensitivity come from periphery.
- TID performance : > 31kRad(Si) for device ON ; all devices remain functional after annealing (24h@25°C+168h@100°C) ; No failure at 35kRad(Si) when devices are OFF.



Overview of NVRAM radiation study (3/3)

MRAM 4Mb Freescale MR2A16A :

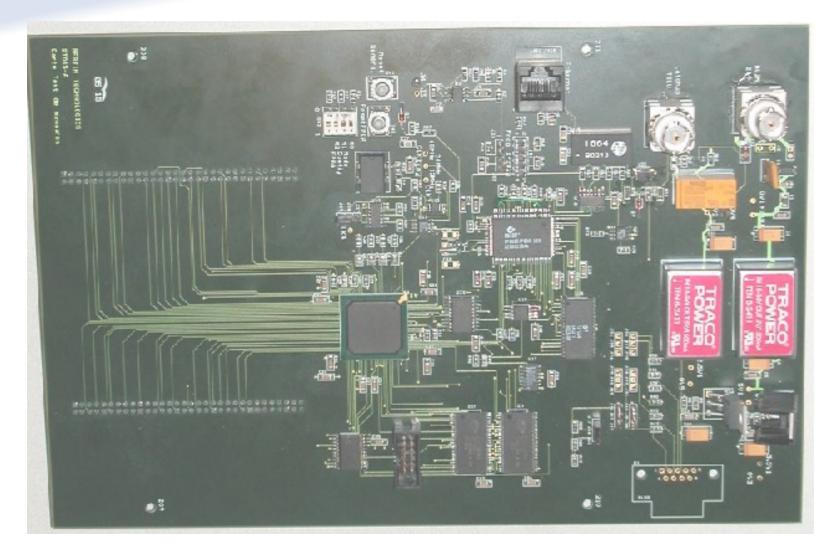
- SEL LET_{th} ≈ 5MeV(mg/cm²) Sigmasat ≈ 1E-3cm²/dev.
- True SEL and cumulative µSEL have been detected


- Memory array is immune to SEU when device is static.
- Tests in dynamic mode have been perturbed by SEL. This is probably due to bad synchronisation between SEU tester (TIMES) and SEL tester (TILU)
- TID performance : > 52kRad(Si) for device ON ; all devices remain functional after annealing (24h@25°C+168h@100°C) ; No failure at 110kRad(Si) when devices are OFF.

Problematic sample preparation of Freescale device

Die is covered by a metallic protection (Magnetic shielding?) :

- Chemical etching is impossible. Thinning cannot be performed by 'sander' because pins are coplanar with die.
- It require machine tool in order to drill base-plate and thin only the die. This method have a lower yield (2 fail on 6 devices thinned)


The new integrated SEE tester for memory : TIMES.

Key features of the TIMES (Testeur Intégré de Mémoire en Evènements Singuliers) :

- Fully autonomous in term of test algorithm and error recognition (SEU, MBU, SHE).
- Synchronisation with TILU for Latch-up detection.
- Internal capacity of 300 000 error vectors (time / type / address / mask).
- 100 programmable LVTTL I/O (Xilinx Spartan 2)
- Remote controlled by GUI on PC. (Ethernet 10Mb/s).
- GUI provide real time cartography of error.

The new integrated SEE tester for memory : TIMES.

