Modelling the space radiation environment

Eamonn Daly, Hugh Evans, Giovanni Santin

Space Environments and Effects Section ESA / ESTEC

> 2nd RADECS Thematic Workshop Louvain-La-Neuve, 25 January 2007

Single Event Effects

Outline

- Radiation sources
- SEE modelling
- From space environment to LET and SEE rates

The Space Radiation Environment

Solar radiation

Protons, some ions, electrons, neutrons, gamma rays, X-rays...

Softer spectrum

Event driven – occasional high fluxes over short periods.

Trapped radiation

Electrons ~< 10 MeV

Protons ~< 10^2 MeV

(Extra) Galactic and anomalous Cosmic Rays

Protons and lons

 $< E > ~ 1 \text{ GeV}, E_{max} > 10^{21} \text{ eV}$

Continuous low intensity

Others

Jovian electrons Man-made sources

	Single Event Effects	Degradation	Charging	Background	Threats to life
~	Trapped and solar protons	TID: Trapped protons	Electrons	All particle species	Solar protons
Effects	GCR and solar heavy ions	and electrons, solar protons			Heavy ions
	Neutrons	NIEL: protons, electrons	5		

SEE: basic mechanisms

Simplifications / Assumptions !

Modelling the Space Environment - RADECS LET WS, 25 Jan 2007

25

Density of energy deposition: LET

 B_i : material dependent correction

	Fe Z = 26				
	Ti Z = 22				
	Ca Z = 20				
	Si Z = 14				
	0 Z = 8				
	He Z = 2				
	H Z = 1				
Cosmic ray ion tracks in a photographic emulsion.					

 LET function of ion energy
 Exploited for tests at ion accelerators

Simplifications / Assumptions !

Ion induced SEUs

- High LET → sufficient to deposit more than critical charge
- SEU induced via direct ionisation

LET integral spectrum

- Combines all ions into one curve
- Total number of particles with a given LET (so combines slow low-Z ions with fast high-Z ions)

Mon Jan 22 16:19:00 2007

 Provides direct ionisation component only!

Geomagnetic shielding

- Within the magnetosphere
- Størmer theory: regions allowed or forbidden depend on the particle Rigidity (momentum/unit charge)

Z > 1 after Stassinopoulos

Geomagnetic shielding (cont.)

SREM

(ESA Standard Radiation Environment Monitor)

Solar Event: Dec 2006

Counts on Integral VS Proba

SEU counter on UoSAT-3

Proton induced SEUs

DEPLETION REGION

Nuclear collisions

- Nuclear interactions in / near sensitive regions
 - Recoil nuclei from elastic
 - Nuclei fragments, gamma, neutrons from inelastic
- SEU Cross Sections expressed as function of proton energy

Open issues

- Physics: double differential cross sections
 - Main recoil &
 - Energy and angular distribution of (high-LET) fragments
- Detailed modelling of the vicinity of the sensitive device
 - Geometry
 - Materials

Atmosphere effect Neutrons

Primary radiation interacts in high atmosphere → secondary radiation

Neutron production relevant to

- LEO (e.g. Shuttle)
- Avionics
 - Reliability
 - Dose to crew
- SEE on ground!

CREME suite

De facto standard model for CR ion fluxes Solar protons?

CREME86

- Ions: 8 models, based on limited measurements
- SPE: based on various flare models including Aug 1972

CREME96

- Ions: 3 models, based on IMP-8 data
- Solar Particle Event model
 - Based on October 1989 Event
 - Average over Worst Week, Worst Day, Peal of Event
 - Is it a good model?

·eesa

Modelling SPEs

- Variability in
 - Energy spectrum
 - Composition (ion species content)
 - Duration
 - Solar cycle intensity
- Need to set-up database of events and accumulate data for decades

L.Rosenqvist and A.Hilgers, Sensitivity of a statistical solar proton fluence model to the size of the event data set, Geophys. Res. Letters, 2003

L.Rosenqvist et al., Toolkit for Updating Interplanetary Proton-Cumulated Fluence Models, J. of Spacecraft & Rockets 42, 6, Nov–Dec 2005

From environment to LET ?

S.Esteve Hoyos et al. (IEEE TNS, 2004)

- De-facto standard SPE models (i.e. CREME96 WW, WD, P5M) based on only one event
- Attempt to re-compute LET spectrum
 - SEU rates using datasets of particle fluxes
 - Compare with SOHO SSR SEU rate data

- Insufficient environment information
 - Limited ion species and energy range
- Limited coverage during SPE
 - Environment data gaps and saturation
- Shielding information lacking detail
 - Available for parts only, no detailed S/C
- Unreliable in-flight data
 - Saturation of SEU counters during SPE

Recommendation of flying LET monitor

 Simple, low cost compared to flux detectors

Modelling SEUs

Charge collection

- Collection efficiency
- Interplay of physics and SV geometry

MBU

- Charge injection in multiple cells
- Charge diffusion to multiple junctions
- Charge injection in device circuitry
- Need detailed modelling
 Monte Carlo transport
 - + Charge Collection

COTS components: poor visibility of manufacturing

New physics

- Track structure from different ion species
- Nuclear interactions
- Microdosimetry spectra in shrinking devices (< 100 nm)
- → Monte Carlo modelling?
- → Data: SEPC monitors?

From testing to prediction

SEU calculation is a combination of test data and environment modelling

Problem areas

- Interpretation of tests
 - "Effective LET" e.g. with tilted samples
 - Samples: thinning, packaging,...
 - Beam conditions
 - Complex devices (SEFI, etc)
- Modelling of S/C and module shielding around devices

- Energies at ground testing facilities
 - \rightarrow Simulations complement ground testing by extrapolating results to real spectra to
 - Interpret and Predict on orbit behavior
 - Understand and Design new technologies

Summary

- SEU problems increasing
 New component problems appearing
- Modelling key to extrapolate tests and understand in-flight data
- Data during Solar Proton Events not satisfactory will need continuous update
- Test and in-flight monitor data vital LET, microdosimetry monitors to complement flux detectors

http://space-env.esa.int

