Practical Interpretation of LET Requirements Saab Space

Stanley Mattsson LLN, January 25th, 2007

SEE Requirements from Alcatel Alenia Space

□ Pragmatic and "in principal" easy to comply to.

Destructive SEE:

► LET ≥ 60 MeV /cm2/mg & 10⁷ ions/cm2: No Events Observed

- ✓ LET ≥ 60 approximated with Xe \Rightarrow Frequently available beams, No tilting required
- ✓ 10⁷ ions/cm2: ⓐ Xe \Rightarrow Usually no problem with use of high ion FLUX
 - ✓ 1000 3000 ions/sec \Rightarrow 3h 1h beam time

□ Non-Destructive SEE:

- ➢ Ions & Energies shall be selected in order to make sure that
 - \checkmark Saturated device cross section is obtained
 - ✓ Ion range greater than EPI layer thickness (valid for destructive & non-destructive)
 - \checkmark Opens up for use of test data from IPN / Orsay or BNL / Brookhaven

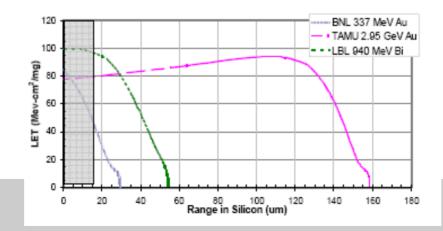
 \Box Heavy ion testing in accordance with ESA 25100 or JEDEC #57

ESA/SCC 25100

 \Box Test & Bias Conditions \Rightarrow Shall be given by the test report

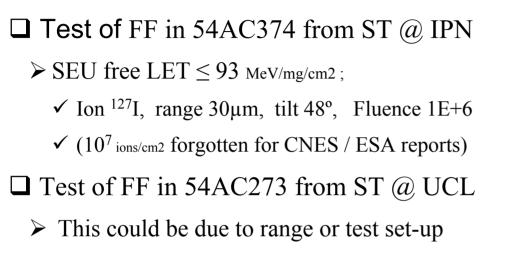
- ▷ Alcatel Alenia Space: \Rightarrow Refers to ESA/SCC 25100
- > Astrium requirement: \Rightarrow "Typical conditions of use for application"

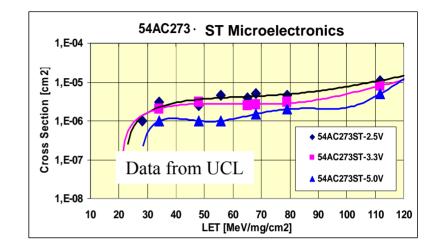
 \Box Ion Range \Rightarrow Typically 30µm

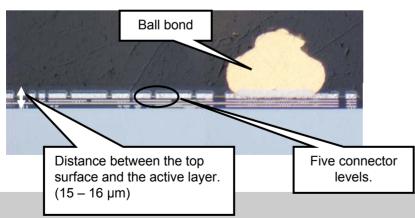

- □ Ion Flux ⇒ Meaningful number of upsets in 1 to 20 minutes
 > "No Dose Rate Effects in SEE testing"
- $\square Max Fluence \Rightarrow 10^7 \text{ ions/cm2}$
- \square 8 out of 13 of pages \Rightarrow How to write Documentations

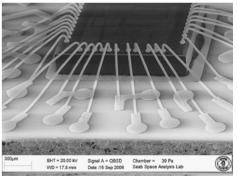
SEL Requirements General Documents

□ No Events Observed for LET > 70 - 110 MeV/mg/cm2


- ➢ Tilt Needed for European Ion Beams
- \succ Tilt may be difficult due to shadowing by the socket
- \Box Ion Range Requirement $\Rightarrow 30 \mu m$
 - ≻ For Galileo, Au ions at BNL would be acceptable
 - $\checkmark~^{197}Au$; LET 80 Mev/mg/cm2, range in Si $\sim 28 \mu m$
 - ✓ With 15 µm dead layer, equivalent LET ≈ 40 MeV/mg/cm2 available

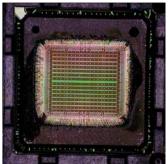




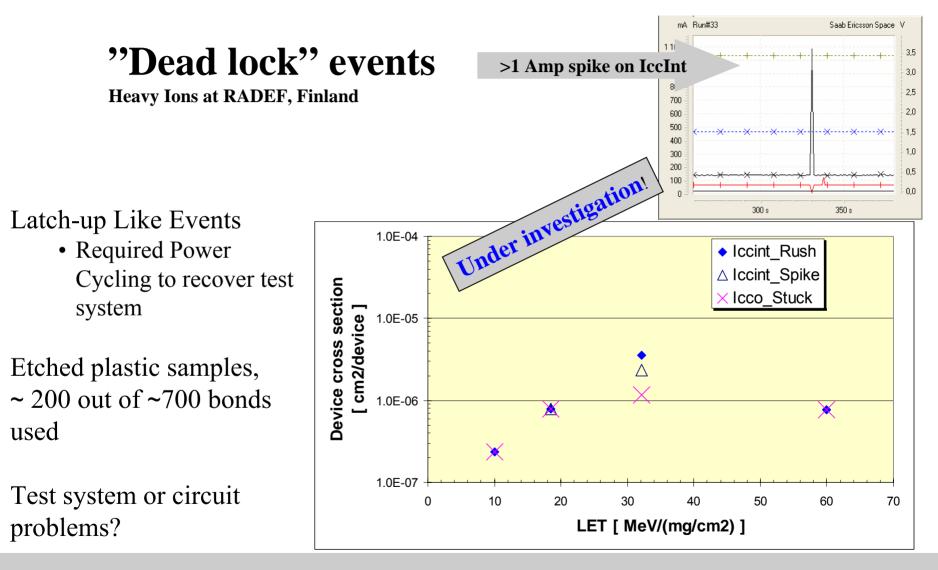

Low Ion Range

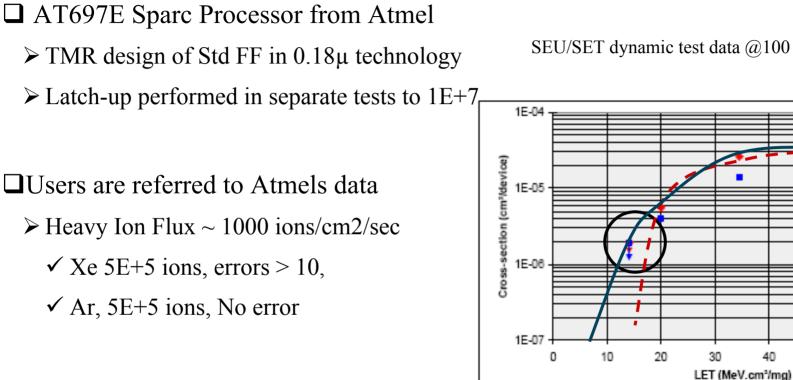
□ Ions of short range require detailed information about DUT

SEM picture of small ASIC



Problems with High Ion Flux @ High LET Values


- Evaluation of "Commercial" Parts Not Seldom Etched Plastic Parts Tested in "Special Evaluation Campaigns"
- Device preparation delicate work
- Complex Devices Normally Requires Complex Test Boards
 - Test induced effects frequently observed
 - \checkmark Problems related to charging of the device
 - \checkmark "Spurious Events" due to conflict on "test board " level / high error rate
 - \checkmark Flux related double bit errors (TMR designs)
 - Hick-ups may require restart of test run
- Low flux @ high LET required
 - \succ 10⁷ ions/cm² @ 100 ions/sec ⇒ 24h beam time
 - ➢ Solution for Latch-up: Dedicated test and test board



LESSONS LEARNED from Xilinx

Example of Complex Device

SEU/SET dynamic test data @100 MHz for AT697E

Reliability aspects

➤ Unacceptable fluence at LET 14 (Ar)

Flux issue; Comparing data @ lower flux needed

Fig. 7 : Uncorrectable errors cross sections (in $cm^2/$ device) at 100 MHz, for natural and maximum skews

Natural skew

Skew max

60

70

50

Conclusions & Topics for the Round Table

□ Are we rejecting / destroying useful devices by over testing ?

□ For radiation analysis we have a "blunt" tool in CREME96

- \succ What is a realistic ratio between sensitive depth and sensitive area (Z=X/?)
- Likely, we have observed test induced problems in Mosfet, SRAM, DRAM, E2prom, FlashProm, FPGA,...
- ➤ Is high fluence testing at Xe really necessary?
- ➤ Reliability aspects require this, but are the numbers realistic
- SEL special test @ high flux to 1E+7
 SEU/SET tests to lower fluence

www.space.se

Thank You for Your Attention