LET requirements impact from a manufacturer perspective

Nicolas RENAUD ATMEL Nantes + 33 2 40 18 17 19 nicolas.renaud@nto.atmel.com

Overview

- LET requirements
- Design implications
- Technological consequences

- Testing issues
- Conclusion

RADECS workshop UCL – 25 Jan 2007

- Most of the space products developed by ATMEL are partly funded by ESA or CNES
- LET requirements based on agencies input
- Up to now :
 - SEL requirements : no SEL below 70 MeV/mg/cm2 at room temp
 - SEU requirements : no SEU below 25 MeV/mg/cm2
 - Error rate for a complex product (processor, SRAM based FPGA...): on a case by case basis
- Since 2005, growing concern for temperature tests (SEL related)
 - Some test results are requested for most recent products
 - Can result in strong constraints if high LET / max temperature / max voltage is requested

Design implications

The collected charge has a strong impact on the mitigation techniques to be used for space products

SEU/SET

- The heavy ion induced pulse width is linked to the LET and to the location of the impact.
- Multiple collection aspects

SEL

- Body tie density
- Guard bands

RADECS workshop UCL - 25 Jan 2007

SET pulse width

3D simulation of an inverter of the ATC18RHA CMOS 0.18µm technology

The duration of diffusion increases with LET. The Voltage duration increases with LET.

5

-

Influence of heavy ion impact location

n

Inverter

- : The most sensitive area
- : Heavy-ion impact

6

Heavy ion impact

Example of location impact influence

LET = 30 MeV/mg/cm2

LET influence on pulse shape

For a given LET value, when the distance increases:

- The current magnitude and duration decrease
- The voltage magnitude and duration decrease
- Moreover, both current and voltage pulse are delayed.

No trivial law to assess V and I variation with the LET and the ion location

Multiple collection

Layout influence

Example of AT40K FPGA HDFF SEU sensitivity

Design mitigation techniques

Design mitigation techniques efficient up to a certain quantity of collected charge

Impact on :

- Cells size : ASIC density
- Cells speed : max frequency
- Cells power consumption
- Complexity of the design implementation (e.g. the use of Triple Modular Redundancy techniques)

Technological aspects

The technogical and process methods to be used to be protected against SEE are impacted by LET

Particular case of SEL

- Epi layer characteristics, well dose implants, SOI …
- Trade-off with other phenomena such as ESD
- Qualification
- Process monitoring

Testing issues

- High LET and penetration depth
 - Number of metal layers increases with advanced technologies
- High LET (> 70 MeV/mg/cm2) with normal incidence not available at UCL or JYFL
- Use of GANIL to reach 95 MeV/mg/cm2 when requested by some customers
- Complex ASICs : SEL test at high LET is disturbed by SEU/SET/SEFI effects

Conclusion

Targetting a certain (high) LET value has an impact on :

- Design
 - Number of gates
 - Maximum speed
 - Power consumption
- Technology / Process
 - Process or technology improvements have to be qualified and often imply a trade-off with other features
- Testing
 - Limited places
 - Complexity
- Existing max LET definition : "As High As Achievable"
- Is it Reasonable?

The end

Thank you for your attention !

