Test Facility Status and Test Conditions

by

R. Harboe-Sørensen

European Space Agency/ESTEC - The Netherlands

Outline:

- Test Facilities General
- Ion Range in Silicon HIF & RADEF
- Linear Energy Transfer Problems
- Sample Preparations Examples
- Test Conditions Complexity
- Ion Beam Calibration SEU Monitor
- Conclusions

Main European Heavy Ion Test Facilities:

HIF

RADEF

GANIL

SIRAD

Ion Range Medium

Ion Range Medium

Ion Range High

Ion Range Low

Main USA Heavy Ion Test Facilities:

BNL

LBL

Texas A&M

Ion Range Low

Ion Range Medium

Ion Range High

Availability & Convenience:

HIF/RADEF/GANIL-SIRAD

BNL/LBL/Texas A&M (USA)

Performance (Ion Range):

GANIL/RADEF/HIF/SIRAD (Europe)

Texas A&M/LBL/BNL (USA)

Facility Cost/Travel:

HIF/RADEF/GANIL-SIRAD (Europe)

(USA) **BNL/LBL/Texas A&M**

(Europe)

HIF Cocktails - Today

Ion Cocktail M/Q=4.94	Energy MeV	Range μm Si	LET MeV(mg/cm²)					
10 _B 2+	41	80	1.7					
15 _N 3+	62	64	2.97					
²⁰ Ne ⁴⁺	78	45	5.85					
⁴⁰ Ar ⁸⁺	150	42	14.1					
⁸⁴ Kr ¹⁷⁺	316	43	34.0					
¹³² Xe ²⁶⁺	459	43	55.9					
UCL – Ion Cocktail #1 produced for ESA								

Ion Cocktail M/Q=3.3	Energy MeV	Range μm Si	LET MeV(mg/cm²)						
¹³ C ⁴⁺	131	266	1.2						
²² Ne ⁷⁺	235	199	3.3						
²⁸ Si ⁸⁺	236	106	6.8						
⁴⁰ Ar ¹²⁺	372	119	10.1						
⁵⁸ Ni ¹⁸⁺	567	98	20.6						
⁸³ Kr ²⁵⁺	756	92	32.4						
UCL – Ion Cocktail #2 produced for ESA 2004									

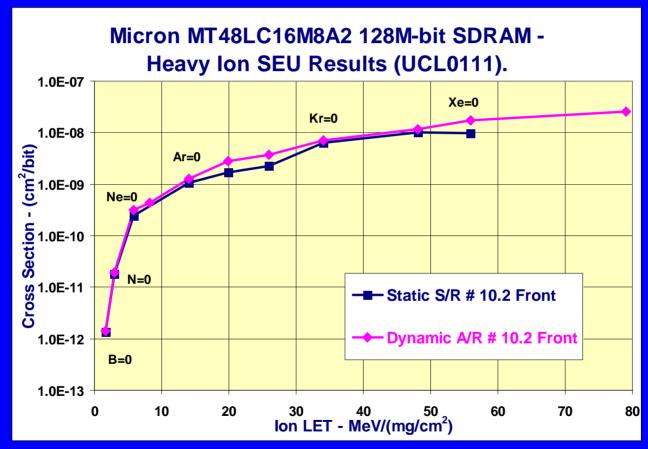
RADEF Cocktails - Today

Ion Cocktail M/Q=4.7	Energy MeV	Range μm Si	LET MeV(mg/cm²)					
14 _N 3+	86	108	2.0					
²⁸ Si ⁶⁺	172	74	8.0					
⁵⁶ Fe ¹²⁺	345	64	22.0					
⁸⁴ Kr ¹⁸⁺	517	66	35.0					
¹³⁶ Xe ²⁹⁺	830	68	64.0					
JYFL – Ion Cocktail produced for ESA June 2001.								

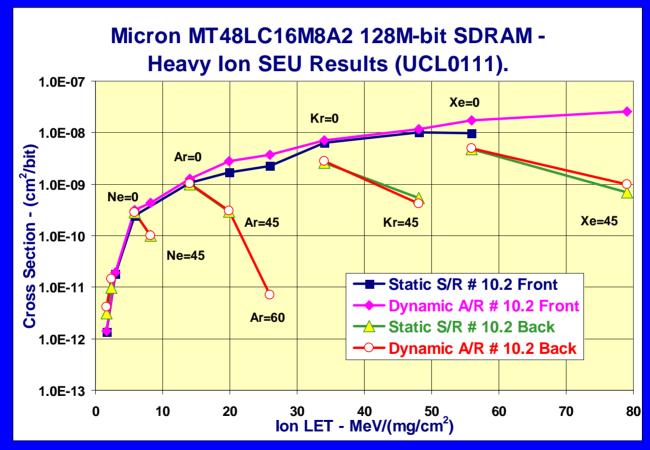
Ion Cocktail M/Q=3.7	Energy MeV	Range μm Si	LET MeV(mg/cm²)					
15 _N 4+	139	218	1.7					
²⁰ Ne ⁶⁺	186	149	3.5					
³⁰ Si ⁸⁺	278	132	6.0					
⁴⁰ Ar ¹²⁺	372	117	10.0					
⁵⁶ Fe ¹⁵⁺	523	99	18.0					
82Kr ²²⁺	768	96	30.0					
¹³¹ Xe ³⁵⁺	1217	97	53.0					
JYFL – Ion Cocktail produced for ESA April 2005								

RADEF Cocktails - Today

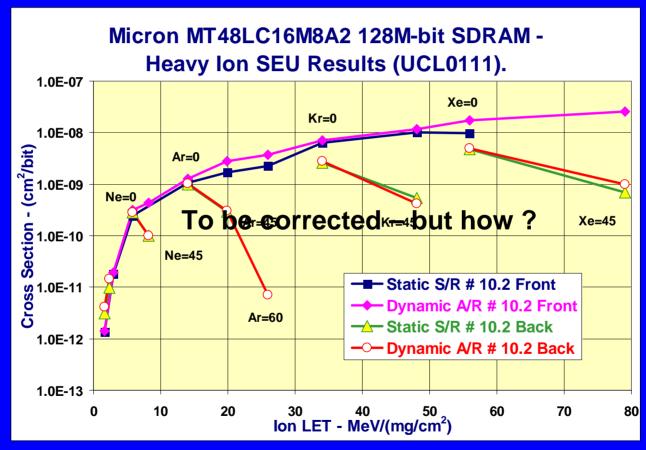
Ion Cocktail	M/Q=3.7 MeV (Me)	Energy		Range μm S	i	LET MeV(mg/cm²)			
M/Q=3.7 Isotlon ^{Char}		(MeV/A)	Kantele	Kantele SRIM		Kantele	SRIM	BNL	
15 _N 4+	139	9.3	207.0	202.1	218.0	1.9	1.8	1.7	
²⁰ Ne ⁶⁺	186	9.3	156.0	145.8	149.0	3.4	3.6	3.5	
³⁰ Si ⁸⁺	278	9.3	132.0	130.1	132.0	7.0	6.4	6.0	
40 _{Ar} 12+	372	9.3	117.0	117.9	117.0	11.7	10.2	10.0	
56 _{Fe} 15+	523	9.3	104.0	97.4	99.0	17.9	18.5	18.0	
82Kr ²²⁺	768	9.4	99.6	94.0	96.0	29.3	32.1	30.0	
¹³¹ Xe ³⁵⁺	1217	9.3	95.0	89.1	97.0	54.9	60.0	53.0	


JYFL – Ion Range and LET values calculated using different codes.

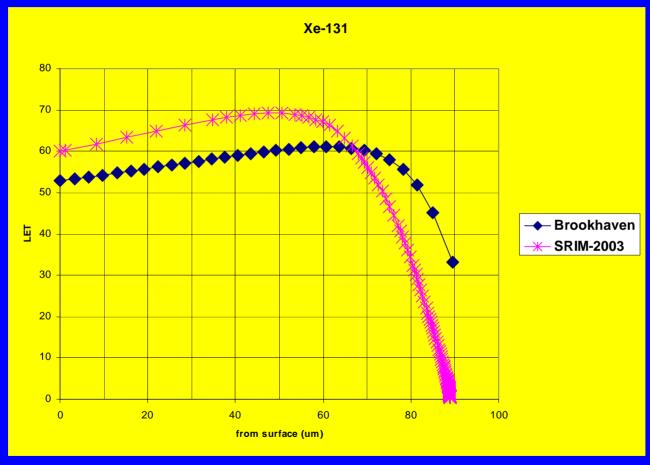
Heavy Ion SEU Results - HIF Cocktail 1



Heavy Ion SEU Results - HIF Cocktail 1



Heavy Ion SEU Results - HIF Cocktail 1



Ref.: Workshop 25.01.07

esa

RADEF – Xe LET versus Distance

Cesa Propos Common

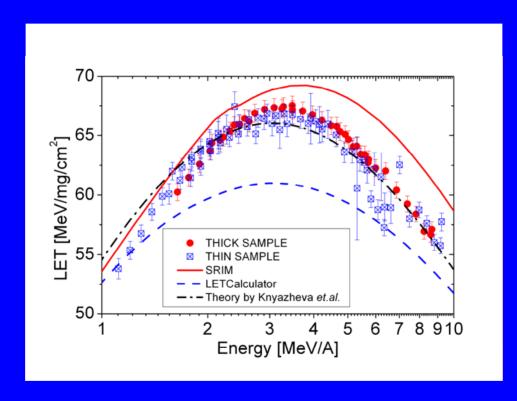
LET/Penetration

 So how can we compare SEE data from different facilities – if different LET codes are used?

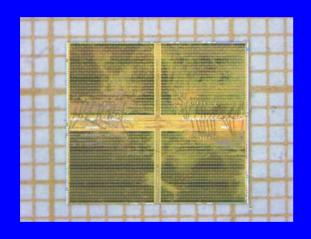
Paper Presented at RADECS'06 and Accepted for TNS Publication:

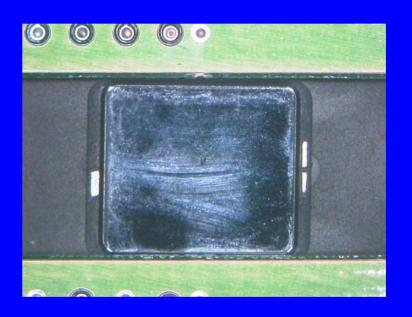
Linear Energy Transfer of Heavy Ions in Silicon

A. Javanainen¹, T. Malkiewicz¹, J. Perkowski², W.H. Trzaska¹, G. Berger³, W. Hajdas⁴, R. Harboe- Sørensen⁵, H. Kettunen¹, V.Lyapin⁶, M. Mutterer⁷, A. Pirojenko¹, I. Riihimäki¹, T. Sajavaara¹, G. Tyurin¹, H. Whitlow¹, A. Virtanen¹


> ¹ University of Jyväskylä, Department of Physics, Jyväskylä, FINLAND ² University of Lodz, Nuclear Physics Division, POLAND ³ Université Catholique de Louvain, Louvain-la-Neuve, BELGIUM ⁴ Paul Scherrer Institut, Villigen, SWITZERLAND ⁵ ESA/ESTEC, Noordwijk, THE NETHERLANDS ⁶ Helsinki Institute of Physics, FINLAND ⁷ Institute of Nuclear Physics, Darmstadt University of Technology., Darmstadt, GERMANY

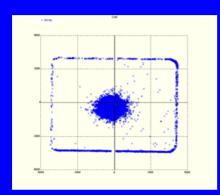
LET of Heavy Ions in Silicon


RADEF Results for Xenon ions in Silicon



Sample Preparations - SDRAM Example

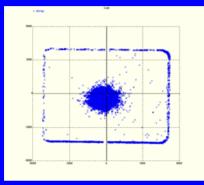
Front side of die

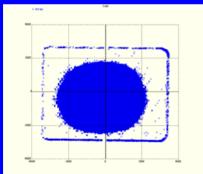

Back side of thinned die thinned to um?

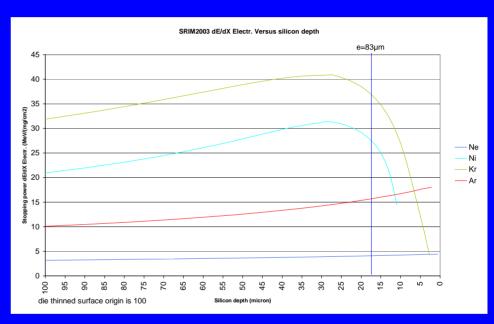
Sample Preparations – SDRAM Example

< 75 um

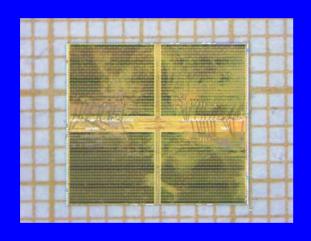
< 85 um

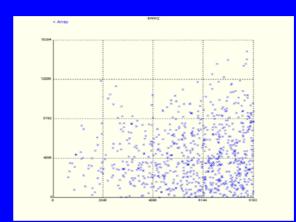

Die thickness measured using Interferometry!

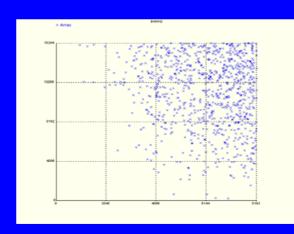



Sample Preparations - SDRAM Example

< 75 um


Stopping Power versus Si depth





Sample Preparations – SDRAM Example

Front side of die

Ref.: Workshop_25.01.07

Bit Error Map/Block

Sample Preparations – SDRAM Example

SEE Data Analysis:

- Thickness measurements vital!
- Requires Bit-mapping of SEU Data
- Based on Physical address locations

Test Conditions – Complex!

• DUT:

- Unbiased
- Static
- Read
- Application

- **Biased**
- **Dynamic**
- Write
- "Special"

Accelerator:

- Ion Types
- flux s/cm²
- Fluences

LET Range Low/Medium/High 1.0E3-1.0E7 ions/cm²

Test Conditions – FLASH Memories – IDA Example: 1

Earlier SEE Results: Nov. 2004

- Samsung SEL/SEFI at LET=14.1-19.9 MeV/(mg/cm²)
- Toshiba SEL/SEFI/Device Failure at LET=8.3-11.7 MeV/(mg/cm²)

Test Conditions - FLASH Memories - IDA

Manufacturer			Ion / LET [MeV/mg/cm²]									
Part Number	Device		N 0°	Ne 0°	Si 0°	Ar 0°	Fe 0°	Kr 0°	Fe 60°	*Kr 0°	Xe 0°	*Kr 60°
Size	ID	Mode	1.8	3.6	6.4	10.1	18.5	32.1	37.0	39.2	60.0	78.2
Samsung	S6f	M1d	SEU	SEU	SEU	SEU	BE	BE			BE	
K9F1G08U0M		M5	SEU	SEU	SEU	SEU	BE	BE	SEFI	BE	SEU	
128Mx8 (1GBit)		M2b	SEU	SEU	SEU	SEU	BE	SEFI			BE	
		МЗа	none	none	none	none	SEFI	none	none	SEFI	none	
		M3b	none	none	none	none	none	none			none	
		M4	none	none	SEU	SEU	SEU	SEU			SEU	
Toshiba	T4k	M1d	none	none	BE	BE	BE	SEU			BE	
TC58NVG0S3AFT00		M5	none	SEU	BE	BE	BE	BE	SEFI	BE	BE	SEFI
128Mx8 (1GBit)		M2b	none	none	BE	BE	BE	BE			BE	
		МЗа	none	none	none	none	BE	BE	BE	SEFI	BE	
		M3b	none	none	none	none	SEU	SEU			SEU	
		M4	none	none	BE	BE	BE	BE			BE	

Test Conditions – FLASH Memories - IDA

Operational Modes:

M1d: Marching with power cycle after erase,

M3a: Storage, biased

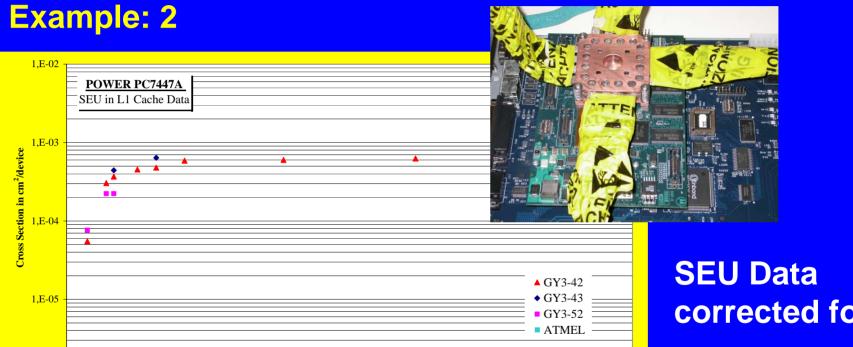
M3b: Storage, unbiased

M2b: Read, Write Protection on

M4: Write

M5: Marching, modification of M1d - in order to

differentiate between "cell errors" and "read


access errors".

Sample Preparations – PowerPC – Alcatel Space

corrected for:

1st Test 80 um 2nd Test 40 um

1 E-06

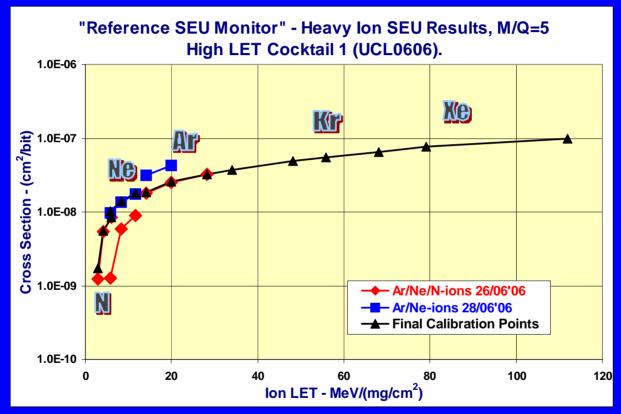
0.0

10,0

20.0

30.0

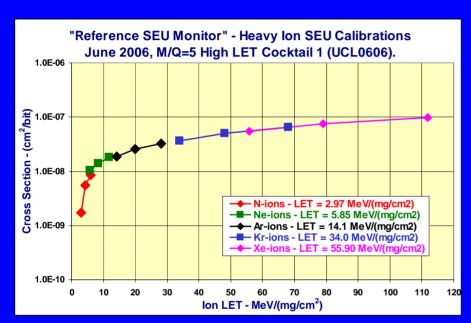
LET (MeV.cm².mg⁻¹)

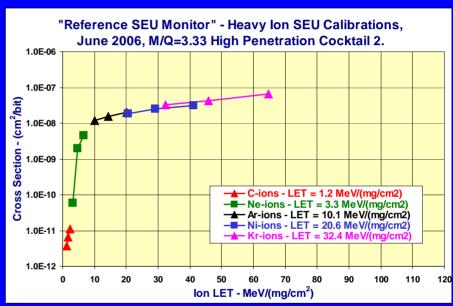


40.0

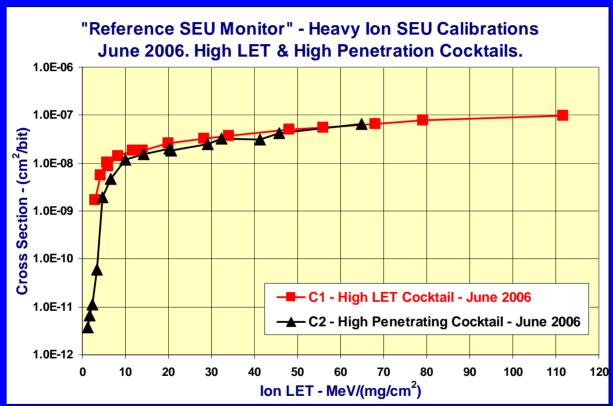
50,0

Ion Beam Calibrations – SEU Monitor


HIF Cocktail 1 - Ion Calibration problems - June 2006.



Ion Beam Calibrations – SEU Monitor


HIF Cocktail 1 & 2 - Calibration - June 2006. lons at 0, 45 & 60° Inclinations.

Ion Beam Calibrations – SEU Monitor

HIF Cocktail 1 & 2 - Final Calibration - June 2006.

Facilities:

- We need accelerators with cm of ion beam penetration - but have to live with HIF and RADEF!
- LET, ion range and calibration problems are currently being addressed and recommendations given!
- SEE testing in general are becoming more complex and could benefit from lower LET test requirements!

