

Final Programme of Wednesday 16-March- 2011 Chairman: R. de Marino, ESA

14:00 - 14:20	The business roadmap. Trends for the future T. Gouvernel, Head of Strategic Business Development, e2v
14:20 - 14:40	In-orbit anomalies due to radiation. Lessons learnt R. Ecoffet, Senior Expert Radiation, CNES
14:40 - 15:00	EEE Parts Procurement for constellations O. Rémondière, Director of Operations Quality Assurance, Thales Alenia Space
15:00 - 15:20	The experience of commercial components insertion in GAIA P. Peres, ASTRIUM Toulouse; A. Gómez, CRISA
15:20 - 15:45	The coordinated procurement of EEE components for ATV M. Veith, Project Manager, TESAT-Spacecom
16:15 – 16:40	ESCC Evaluation and Qualification Programme J. Howley, Enterprise Ireland; G. Joormann, DLR; J. Wong, ESA
16:40 – 17:00	Optoelectronics: risk management of problems encountered A. Bensoussan, Senior Components Expert, Thales Alenia Space Toulouse
17:00 – 17:40	 Challenge for advanced payloads: Next generation ASICs, FPGAs and Advanced Conversion components needs (1) and developments (2) (1) L. Baguena, Thales Alenia Space, M. Childerhouse, Astrium; (2) F. Malou and D. Dangla, CNES; L. Hili and D. Merodio, ESA

e2v, The business roadmaps, the trends for future

Thierry Gouvernel, Head of Strategic Business Development e2v Grenoble ESCCON 2011, Noordwijk

© e2v technologies plc

e2v is a leading global provider of **technology solutions** for high performance systems;

delivering **solutions, sub-systems and components**, to advanced systems companies, for specialist applications

within medical & science, **aerospace & defence**, and commercial & industrial markets.

•Founded: 1947

Annual sales: \$320 million

•Corporate HQ: Chelmsford, England

Listed on the London Stock Exchange and FTSE4Good index

•Employees: approx 1500, of whom approximately a third are engineers and scientists

•6 production facilities: 3 in England, 1 in the US, 1 in France and 1 in Switzerland

•Sales made to over 50 countries

technology solutions for high performance systems © e2v technologies plc

Sales by Division

RF power solutions (tubes)

High performance Imaging solutions

Hi-rel semiconductor solutions

Quality

e2v's operational centres are certified to:

- •ISO9001:2008
- •ISO/TS 16949:2002 (Lincoln and Corcelles automotive products)
- •AS/EN9100 (Grenoble and Santa Clara aerospace semiconductor products)
- •MIL-PRF-38535 custom microcircuit certification (Santa Clara, Grenoble)
- •ESCC (European Space Components Coordination)
- •Environmental Management System (EMS): ISO14001
- •BITC environmental index: Gold rating

High performance imaging solutions

High performance imaging solutions for programmes requiring CCD & CMOS sensors and cameras for:

- •Space and earth observation imaging
- •Science and life science imaging
- Machine vision
- Ophthalmology
- •Dental x-ray systems

Imaging / Market segments

Automatic data collection

Dental radiography

Ophthalmology

Machine vision

Living planet observation

Science

Defence

Astronomy & space science

Land Earth observation

© e2v technologies plc

e2v Imaging devices, Enabling Earth Observation Satellites

e2V

THEOS - Thaïlande

PLEIADES - France

SPOT – France

Helios - CNES - DGA

CSO MUSIS - France

RapidEye - Canada

OFEK – ISRAEL

Göktürk- Turkey

SEOSAT - Spain

FORMOSAT1 - Taiwan

VnredSat1 - Vietnam

ALSAT-2A -Algeria

MAPING - China

LASP - USA AMAZONIA - Brazil © e2v technologies plc

Slide 8

Imaging Core technology roadmap Plaform approach to support several markets

```
e<sub>2</sub>v
```

Markets

Hi-rel semiconductor solutions

Hi-rel semiconductor solutions for aerospace & defence programmes requiring:

- •Lifecycle management
- •Hi-rel microprocessors
- •High speed data converters
- •High reliability ICs with lifetime continuity of supply
- Assembly & test services
- •MRAMs

High-Rel Semiconductors Applications

Defense & Aerospace

- Radars
- Electronic warfare
- Counter measures
- Telecom Satellites

Avionics

- Flight computers
- Flight control systems
- Voice data recorders
- Displays
- Engine control

Industrial and Instrumentation

- Down-hole drilling
- Instrumentation : DSO, Data Acquisition
- Scientific : HEP, Radioastronomy

e2

ALL REPORTS AND IN COLUMN 1

Semiconductor Partner Program

2011

Slide 12

Focus on Data Converters: Technology platform overview with upcoming steps

Slide 13

Data Converters Product Offering by application's frequencies of operation

Data Converters Roadmap

e2v

Assembly & Test Services

Premier Assembly and Test Services for high reliability semiconductor products

Largest independent ATH in Europe

Class 100 assembly clean rooms

First in class test equipment

Assembly & Test Services Grenoble Industrial facilities - Packaging Line

Road Map Package & Assembly Process evolution

e2v

Package Road Map, for high speed, high pin count devices

Assembly & Test Services Grenoble Industrial facilities - Test Line

Automatic Test Equipments CCD & CMOS image sensor Teradyne A393, A565IH, IP750 and dedicated test-bench Mixed & RF IC Teradyne A567 (x3), A585 Digital IC Teradyne J971, J973, Tiger, Ultraflex NextTest PTHF64 **Dimensional test: ICOS CIT120** Low/high temperature handlers and probers EG4080/4090/6000 probers Multitest, Delta design.

 Reliability and burn-in : Secasi- AEHR – ELES oven

Life cycle extension Examples & References related to wafer banking

- 20+ years : 8-bit microprocessors (68XX)
- 12+ years : 32-bit microprocessors (68XXX), ARINC Controller, ADCs
- 10+ years : Digital/Mixed signal ASICs, 8-bit microcontrollers (HC811E2, HC11)

All commitments to customers entirely fulfilled, no product shortage ever !

© e2v technologies plc

- European Semiconductor Industrial partner for supply chain, backend and long term support of complex products:
 - semiconductors, image sensors, high speed data converters, life cycle extension...
- Space components solutions and roadmaps, in synergy with adjacent markets (Civil and Military Avionics, Defence, Medical, Scientific & Industrial)
- Bridge between commercial semiconductor industry/technologies and the specific needs of Aerospace market.

Thank you!

www.e2v.com

In-orbit anomalies due to radiation. Lessons learnt

Robert Ecoffet, CNES, France

Cnes

Technical context

- A problem which is specific to space applications
- A major dimensioning constraint for on-board systems
- Very fast evolution of electronic technologies
- Performance often leads to cutting edge designs
- A strong economic drive toward margin reductions
- More exposed missions
- Smaller satellites (less shielding)

Dimensions : 0.1 \mum² (or 0.3 \mum x 0.3 \mum) for a 1-Gbit DRAM cell

Time : 1 ps for a 1-GHz processor

Charge : 1 μV for a 22-bit ADC

256 Mbit SDRAM : more transistors in a single chip than in a whole 1980's spacecraft designs (GALILEO Jupiter probe for example)

Cnes Space environment radiation sources

R. Ecoffet, ESCCON 2011, 16.03.2011

Main types of radiation effects

Electrical Architecture (Generic) - Equipment loss - Self switch-off, disjunction, reset, reboot, redundancy swapping	Dose, Latch-up (SEL) SET
On-board energy - Solar panel degradation	Dose, Displacements
Attitude and orbit control system -Possible attitude loss -Star tracker out of loop -Inertia wheels disturbances -Switch off ion thruster	SEU Proton transients (SAA, flares) SET SET
On board management -Disturbances of on board computer, resets, mode refusal, safe-hold mode -Mass memory	SEU
Imaging systems -« UFOs » -Hot pixels, RTS -Dark current, non linearity, etc	Proton transients Displacements Displacements, dose
Time references - Frequency jumps	Dose on SAA passes or flares

R. Ecoffet, ESCCON 2011, 16.03.2011

Few records, evidenced in degraded mission cases, harsh planetary environments, or ultra-sensitive systems

- Artificial radiation belts
- HIPPARCOS
- The GALILEO probe at JUPITER
- Ultra sensitive systems

Artificial radiation belts

■9 July 1962 : Starfish nuclear experiment

- 10 July 1962 : launch of TELSTAR-1
- 21 Feb 1963 : TELSTAR loss (diode)

7 satellites lost in 7 months

Explosion	Location	Date	Yield	Altitude km	Nation
Argus I	South Atlantic	<u>8-27-58</u>	<u>1 kt</u>	~200	<u>US</u> A
Argus II	South Atlantic	<u>8-30-58</u>	<u>1 kt</u>	~250	USA
Argus III	South Atlantic	<u>9-6-58</u>	<u>1 kt</u>	~500	USA
Argus III	South Atlantic	<u>9-6-58</u>	<u>1 kt</u>	~500	USA
Starfish	Johnson Island (<u>Pacific</u>)	7-9-62	<u>1 Mt</u>	~400	USA
?	<u>Siberia</u>	10-22-62	? 100s of kilotons	?	<u>USSR</u>
?	<u>Siberia</u>	10-28-62	submegaton	?	USSR
?	<u>Siberia</u>	11-1-62	megaton	?	USSR

cnes

Cnes

HIPPARCOS

COLES GALILEO probe at JUPITER

Timeline of effects

COLES GALILEO probe at JUPITER

- After Amathea encounter, data collection stopped
- Deepest orbit in the radiation belts
- Spacecraft switched to safe mode (proton SET in command and data system)
- Recorder could not be played back
- Problem due to OP133 LED in tape position encoder
- JPL used a current annealing strategy
- Recorder was restarted and data retrieved

This is a perfect example of the application of excellent radiation effects knowledge in a practical mission case

Ultra-sensitive systems

DORIS / JASON-1 frequency shifts

Single event effects

Numerous records, major contributor to radiation induced spacecraft anomalies

Galactic cosmic rays
 Solar particles (protons, ions)

Trapped protons

Cosmic ions SPOT-1, 2, 3 OBC upsets (SSO orbit)

Cnes

Cnes

Cosmic ions SOHO at L1 events (except SSR)

TABLE I ESR Events

Date	Unit	Event
04/12-1996	ESR	Attitude Control Unit - PSU reset
19/11-1997	ESR	Attitude Control Unit - self switch-off
03/03-1998	ESR	Centrale Data Mana. Unit - switched
28/11-1999	ESR	Attitude Control Unit - PSU reset
07/01-2000	ESR	Attitude Anomaly Detector - spurious
28/11-2000	ESR	Attitude Control Unit - PSU reset
14/01-2001	ESR	Attitude Control Unit - PSU reset

TABLE II BDR Events

Date	Unit	Event
12/01-1997	BDR1.2	Switch-off triggered by protection
01/04-1997	BDR1.1	Switch-off triggered by protection
16/05-1998	BDR2.1	Switch-off triggered by protection

TABLE III VIRGO Events

Date	Unit	Event
09/09-1996	VIRGO	Crashed - self switch-off event
07/05-1997	VIRGO	Latch-up - self switch-off event
20/05-1997	VIRGO	Latch-up - self switch-off event
26/05-1998	VIRGO	Power fail - self switch-off event
12/07-1999	VIRGO	Latch-up in DAS – (1 st SEL)
11/02-2000	VIRGO	Latch-up in DAS - (2 nd SEL)
30/03-2001	VIRGO	Latch-up in DAS – (3rd SEL)

TABLE IV LASCO Events

Date	Unit	Event
19/03-1996	LASCO	Voltage anomaly - requiring reboot
10/06-1996	LASCO	Voltage anomaly - requiring reboot
19/12-1996	LASCO	Voltage anomaly - requiring reboot
26/04-1998	LASCO	Hung-up - requiring reboot
28/03-2000	LASCO	PROM off - requiring reboot

Power supply events : SETs on PM 139 or UC1707J

Solar particles *MAP at L2 processor reset*

- MAP (NASA spacecraft) orbiting at L2
- **5** November 2001, switch to safehold condition
- Due to processor reset
- 3-7 November 2001 : large solar event
- Solar ion SET on PM139 from reset circuitry
- Consolidated by CREDO / MPTB (QinetiQ UK) measurement of flare ions

Cnes

Solar particles SOHO at L1 SSR upsets

R. Ecoffet, ESCCON 2011, 16.03.2011

Cnes

Trapped protons DEMETER BANT DSP upsets

cnes

Trapped protons MYRIADE reaction wheels resets

Trapped protons IASI/METOP : SEUs on rad-hard memories

R. Ecoffet, ESCCON 2011, 16.03.2011

cnes

Trapped protons PRARE / ERS-1 instrument loss (SSO)

 Latch-up on 64-kbit CMOS SRAM, after 5 days 9 W, 16 to 32s, instrument lost

The particular case of sensors

External sensors are particularly exposed to radiation

- By nature (charge collection devices), they are sensitive to radiation effects
- Charge collection after a proton (or ion) impact
- One or many pixels may be affected
- On matrix detectors, tracks can appear

Transient signals

nes

Permanent or semi-permanent damage

COLS Blurring of VIS camera on NASA / POLAR

14 Jul 2000 (00/196) 10:41:14 UT 130.4 nm

14 Jul 2000 (00/196) 11:14:35 UT 130.4 nm 14 Jul 2000 (00/196) 10:49:21 UT 130.4 nm

14 Jul 2000 (00/196) 11:22:42 UT 130.4 nm

14 Jul 2000 (00/196) 11:31:43 UT 130.4 nm

Solar protons "filmed" by SOHO

R. Ecoffet, ESCCON 2011, 16.03.2011

Galileo at Jupiter

Image of a Sodium volcanic plume on the moon lo contaminated by speckles due to Jupiter radiation belts, JPL image

cnes

SPOT "UFOs"

Cnes Jason-1 star tracker transients

Proton tracks in SAA passes

Jason-1 star tracker transients

SAA passes

Clear star field Same star tracker on JPL GENESIS probe was blinded 4 times during April 2002 SPE.

CORS Permanent or semi-permanent damage

Hot pixels (left) and RTS (right) on SPOT-5 MIR detectors

R. Ecoffet, ESCCON 2011, 16.03.2011

NASA Lidar on CALIPSO

-An SEU on one of the Lidar components can lead to a constantly powered X-band emitter with a risk of burn-out if this lasts too long

-We switch-off this payload on NASA SW solar flare warning

CODES Space Weather operation on CALIPSO

- 12.07.06: We received notification of a space weather 100 MeV warning at 7:11 PM on Wednesday, 12.06.06. Because of this warning we have turned off the CALIPSO payload controller, and we expect that we won't resume operations before Monday, 12.11.06.
- 12.11.06: The space weather forecast is improving and plans to resume CALIPSO operations are being finalized. Plans to resume operations follow:
 - December 12, 2006: Reactivate Payload Controller provided conditions remain less than 100 MeV
 - December 13, 2006: Apply power to laser system, Configure PL in Standby provided conditions are less than < 10 MeV. Resume data acquisition at earliest opportunity (late 12/13/2006 or early 12/14/2006).
- 12.12.06: CALIPSO reactivation began today when the CALIPSO Payload Controller was successfully turned on at 12:14 UTC. A 10 MeV space weather alert remains in effect until 16:00 UTC today. The 10 MeV alert must be clear before further activation of the CALIPSO payload can be performed. We anticipate favorable conditions and plan to continue CALIPSO reactivation on December 13, 2006.
- 12.13.06: Space weather conditions deteriorated overnight. The NOAA Space Environment Center issued 100 MeV and 10 MeV warnings and alerts at 03:00 UTC December 13, 2006. In response to these conditions, the payload controller was turned OFF at approximately 12:15 UTC 8:06 UTC December 13, 2006 as a precautionary measure. Space weather warnings at both the 10 MeV and 100 MeV levels remain in effect until 23:59 UTC December 13, 2006. It is possible that these warnings will be extended later today.
- 12.14.06: Space weather conditions continue to be unfavorable for CALIPSO operation. Space weather 100 MeV and 10 MeV warnings remain in effect through at 01:00 UTC December 15, 2006 and we anticipate that these warnings will be extended later today. The solar activity forecast predicts at least a 75% chance of additional proton events through December 16, 2006 with NOAA sunspot Region 930 responsible for the elevated activity. Tentative plans are being developed to begin CALIPSO reactivation on Monday, December 18, 2006 and return to science operations with X-band data transmission on December 19, 2006. Correction (see change made below): The CALIPSO payload controller was powered OFF at 8:06 UTC on December 13, 2006 and not at approximately 12:15 UTC as initially reported.•
- 12.20.06: CALIPSO resumed nominal data acquisition December 19, 2006 at 13:56 UTC. Payload performance is nominal based on a review of telemetry received last night and early this morning. CALIPSO will remain in nominal data acquisition until a planned drag make up orbit maneuver tentatively planned January 16, 2007.
- 01.12.07: The CALIPSO payload will be out of service between 08:45 UTC on January 15, 2007 until 13:28 UTC on January 17, 2007. The down time is necessary so the CALIPSO satellite can perform a drag make up orbit maneuver to maintain its position in the A-train constellation and to perform a periodic check of the redundant CALIPSO laser system. The next scheduled outage will occur in support of an overall A-Train inclination manoeuver sequence with the first of three CALIPSO maneuvers tentatively scheduled on March 8, 2007.

R. Ecoffet, ESCCON 2011, 16.03.2011

C∩es Effects of a major SW event (oct-nov 03)

COLES Technological trends - dose

- In general, advanced technologies tend to have quite good TID figures
- Downscaling implies thinner gate oxides
 - favourable to better TID performance (less oxide traps)
 - lower gate leakage with dose
 - drawback : higher influence of interface states \rightarrow rebound effects
- But reduction in spacing brings other mechanisms such as parasitic channel (source – drain leakage)

COLES Technological trends - dose

- It has been observed that the use of nitride passivation has a strong negative impact on TID performance
 - mechanism still to be elucidated, probably related to H+ migration
- The (few) available results on high-k dieletric and strained silicon technologies do not show to date a negative impact of these features on TID performance

CORS Technological trends - SEE

- Both VDD reduction and geometry downscaling lead to lower charges stored on the nodes Qnode=VDD x Cnode
- New generations have lower SEE threshold critical charges → higher SEU sensitivity
 - 1980's : heavy ions
 - 1990's : protons
 - 2000's : atmospheric and thermal neutrons

Conditions	FIT/Mb Neutrons	FIT/Mb alpha Am241	TOTAL
Sea level	1300	2200	3500
Alt.1500 m	3000	2200	5500

CMOS 0.13um, Los Alamos NSC 1000 FIT = 1 error per 114 years, for 128 Mbytes=> 1 error per 14 days at ground level

cnes **Technological trends - SEE**

- More sensitive but harder to shoot at (smaller) targets
 - device SEU sensitivity more or less the same
 i.e. for a sensitive memory, the surface of the die
- Transient pulses become larger than gate transition times and can propagate to outputs
- With frequency increase, probability of capture in latches increases

SER in combinatorial logic becomes comparable to SER in latches

Cnes **Technological trends - SEE**

Good news :

- crosstalk, substrate noise,... and atmospheric neutrons problems
- brings interest of large manufacturers for SEU/SET mitigation
- technology / internal coding or fault tolerant techniques
- Bad news (for rad-hard products)

 - use of tungsten interconnections
 p+ / W interaction leads to high LET recoils

 - latent p+ SEU rate recently evidenced on some rad-hard devices
 does not concern classical / commercial devices (already sensitive)

CCORES Dedicated instruments and experiments

- Space environment monitors
- Technology experiments

Space environment monitors

- Space environment monitors are of great help as witnesses of conditions during the anomaly
- Generic data from environment observatories (e.g. GOES, POES)
- Monitoring on the host satellite
 - "Black box" for future investigations
 - Particularly useful in GEO where conditions may vary with longitude

ines

Technology experiments, e.g :

■ SEE monitoring (SEU, SET, SEL, SEB,...) can give useful information

- on the raw SEE rate on devices before system filtering
- and thus give an idea of the raw level of perturbation
- Dosimetry and/or dose drift measurements can give information
 - on the actual dose level received and state of components
 - on remaining lifetime
 - provide anticipation on possible recovery techniques

- Radiation-induced spacecraft anomalies have been observed since the very beginning of the space era
- Radiation effects anomalies have their origin at the component level but the observed anomaly is a system response
- Radiation effects knowledge is a tremendous added value for engineering anomaly way-outs (e.g. JPL / Galileo)

Challenges and Opportunities for EEE parts in Constellations,

O. Rémondière, Y. Folco – ESCCON 2011, 15-17/03/2011 @ ESTEC

reference : 100181703F-EN

16/03/2011 TAS-11-Q/B-16

All rights reserved, 2011, Thales Alenia Space

n Drivers for EEE parts policy

n ThalèsAleniaSpace EEE parts policy for Constellations

n Consequences

n Risks

n Conclusions

THALES All rights reserved, 2011, Thales Alenia Space

16/03/2011 TAS-11-Q/B-16

16/03/2011 TAS-11-Q/B-16

Page 4

Where is it coming from ?

		Page 5
Telecom GEO	PROG A	PROG B
Parts Management Process : Per ECSS-Q-60 class 1	Parts Management Process: Per ECSS-Q-60 class 1 & 2 equivalent	Parts Management Process per ECSS-Q-60 class 2 & 3 equivalent
Class 1 / Grade 1, mandatory for : ALL PARTS	Class 1 / Grade 1, Mandatory for : Crystal Oscillators, Crystals, Hybrids from non space qual line, EMI filters Electromagnetics Relays, Tantalum chips capacitors, Stacked ceramic chips capacitors, Cermet Fuses, Connectors at equipement interfaces	Class 1 / Grade 1, Mandatory for: Crystal Oscillators, Crystals, Hybrids from non space qual line, EMI filters, Electromagnetics Relays, Tantalum chips capacitors, Stacked ceramic chips capacitors,, Cermet Fuses, Connectors at equipement interfaces
Grade 2: NO PARTS	Grade 2 minimum : Microcircuits, RF active devices, Rectifier, Zener, Signal Diodes, Bipolar transistors, arrays, FET, JFET, Power MOSFET, Opto- couplers, Hybrids from MIL QPL, Some passive parts (Interesting for re-use of existing design, originally populated with Grade 1 parts)	Grade 2 minimum : Thermistors, Connectors and Contacts, passive parts, Hybrids from space qual lines (an all other functions if Interesting for re-use of existing design , originally populated with Grade 1 parts)
COTS: NO PARTS	COTS allowed on case by case basis (performance): Few Microcircuits and RF active devices	COTS allowed as general policy : PEMs and PEDs (all functions): Packaged Microcircuits including MMICs; Rectifier, Zener, Signal Diodes; Low power Bipolar, FET, JFET, transistors arrays, Commercial I.R power MOSFET, Opto-couplers

General Policy

- n To offer the best compromise between Risks, Quality and Cost
- n To consider alternative policies applied on similar programs from sub-contractors
- n To allow the use of grade 1, grade 2 and COTS
- n Proposals with key components preliminary Parts List, Parts heritage and contractor policy for COTS screening

Evaluation and Qualification Policy for PEMs and PEDs

- n The requirements provide in base line a qualification test flow (adapted from NASA / CNES flow)
- n Alternative approaches such as Manufacturer qualification data or Sub-contractor proposal based on Internal parts policies for similar programs are acceptable. In both cases, two first Go / No Go criteria for lot acceptability are:
 - n Successful Radiation tests or data
 - n Constructional analysis.

Page 6

Screening Policy for COTS

- n The requirements provide 3 options regarding youth defect parts elimination
 - n 100% Screening. When feasible, Test flow and sensitive parameter tables are provided
 - n Justification based on Manufacturer SPC data
 - n Burn-In and/or Cycling tests at PCB assembly or at Equipment level
- n Alternative proposals from sub-contractor for similar programs are acceptable

Pure Tin issues with COTS

- n PEMs and PEDs comes from RoHs fabrication lines (Pure tin terminals)
 - n Tin whiskers can develop and create short circuits
 - n The Contractor shall propose mitigation strategies to prevent whiskers induced failures
 - n The requirements provide Guide lines for Pure Tin risk mitigation

Commercial Parts Procurement and Obsolescence management

- n The requirements provide cost oriented guide lines
 - n Procurement in single lot preferably One test campaign
 - n Procurement for the total needs of the program COTS life cycle is incompatible with the program duration
 - n Huge quantities needed. (More than 40 000 for one PEM for example)

Page 7

Consistency of all PA requirements is key to enable the use of COTS

Reliability and Failure rate predictions have to be adapted to take benefit from COTS

- n Unit and Parts life time demonstration is a matter of evaluation and qualification
- n Unit Failure Rate is a matter of prediction
 - Based preferably on TAS tailoring of MIL-HDBK-217 from Lessons Learnt
 - Or on Sub-Contractor proposed approach
- Mounting processes Qualifications have to be adapted and complemented for PEMs
 - n Storage, mounting, rework and repair (IPC/JEDEC J-STD-020A)
 - n Mounting process validation per Lot
 - n Tin whiskers mitigation at PBA level
 - n Demonstration of Inspection efficiency and / or Process Control for Grid Arrays
 - n Specific validation for Glob Top technologies / 3D technologies

Page 9

Risks	Mitigation
Lack of experience related to COTS selection and management	Support from Thales Group EPM . Thales PPL Access Mapping of COTS selection from contractors versus Thales PPL entries and current status (Qual, EOL, etc) Contractor heritage and running programs with COTS
Lack of Engineering support to review and approve Justification Files	To ensure enough resources at Prime and Contractors level early in the Program
Late « showstopper » during part validation wrt Unit developement	To approve very early the parts selection in order to allow early unique batch procurement and validation before freezing the design
Support from Manufacturers in case of problems	Early and full validation of the lots allowing back-up strategies in case of issues
COTS Obsolescence	Procurement for the entire program and improved storage conditions
Tin Whiskers	State-of-the art risk mitigation guidelines included in the requirements
100% reliable traceability	To procure as far as possible from OEM. To get from the supplier all the available traceability elements

Good feedback from the market during PROG B RFPs for Units

- n Requirements are understood
- Positive Feed-back from equipment manufacturers involved on previous constellations program
- n 95% of proposals received with key components preliminary parts lists.
- n When COTS are proposed, their management are fitting with expectations
- n Generally, proposals are taking benefits from the requirements to offer high performance at low cost

QA-F

EUROPEAN SPACE COMPONENT CONFERENCE

ESCCON 2011

THE EXPERIENCE OF COMMERCIAL COMPONENTS INSERTION IN PEM (GAIA PROGRAM)

P. Peres / A. Gomez – 16 March 2011

All the space you need

WHY COMMERCIAL COMPONENTS ?

- The demanding performances of the GAIA-PEM (Proximity Electronic Module) made necessary the use of commercial components for several critical functions.
- Driving requirements for GAIA-PEM design are :
 - In first place, electrical performances :
 - Low noise
 - Power dissipation stability
 - Limitations in power dissipation
 - Very tight timing uncertainty
 - Limited volume and weight
 - Minimum interconnections

All the space you need 16 March 2011 - 2

HOW COMMERCIAL COMPONENTS HAVE BEEN SELECTED ?

- The selection of these components has been made along the different R&D activities.
- During these studies it has been analysed many alternatives for each function looking for a radiation tolerant, at least evaluated or used in previous missions.
- The most relevant components have been included in different design alternatives, assembled and characterised with respect to their main relevant parameters influencing the PEM performances.
- No space or military qualified component has been identified to meet the PEM performances.

All the space you need 16 March 2011 - 3

WHAT WE DID ?

- Collaboration within Astrium (Spain & France) for the selection, procurement and use of commercial components.
- Selection process based on procedures commonly built by the French multi-partnership :
 - Guidelines on the use of parts out of manufacturers specified temperature range (up rating) : RNC-CNES-Q-60-511
 - Selection procedure for electrical, electronics and electromechanical (EEE) commercial components intended to be used in space applications : RNC-CNES-Q-60-514

Components selection :

- Identification of commercial candidates (including back up)
- Preliminary assessment
- Risk analysis
- Proposed commercial components baselines

All the space you need 16 March 2011 - 4

WHAT TYPES OF COMMERCIAL COMPONENTS HAVE BEEN ANALYZED ?

 More than 60 video operational amplifiers, rail to rail and single supply voltage, providing very low noise and low input offset voltage and input bias current.

Identified candidate : AD 8028

More than 50 ADC's providing 16 bit or better resolution, preferably SAR architecture with no pipeline delay and with conversion time faster that 1,2 us.

Identified candidate : AD 7621

More than 15 analog switches, providing low R_{on}, fast switching time, and low and single supply voltage.

Identified candidate : MAX 313, 1st back up candidate : ADG 451, 2nd back up candidate : SWI ISL43110

Several fast clock drivers.

Identified candidate : EL 7457

Multiple, preferable octal or larger, 8-bits DACs.

Identified candidate : MAX 521 (back up candidate : AD 7228)

All the space you need 16 March 2011 - 5

GENERIC POLICY FOR COMMERCIAL COMPONENTS APPROVAL (1)

1) TO COMPLETE A JUSTIFICATION DOCUMENT (JD)

- To collect available data on the commercial components (general information, literature, supporting data on previous lots, data sheet)
- To define an evaluation plan (including radiation tests)
- To define the screening flow of the FM lot.

2) TO PROCURE THE FM LOT

The FM lot is procured, according to manufacturer data sheet.

3) TO PERFORM AN EVALUATION OF THE FM LOT

 The evaluation of the FM lot is performed, according to the JD plan and to the risk analysis raised to identify the most urgent tests to be done (SEE, constructional analysis, life test, out gassing...).

4) TO SCREEN THE WHOLE FM LOT

- The FM lot is screened by the user (based on the evaluation results)
- Since evaluation is done on the FM lot, no additional LAT is requested

All the space you need 16 March 2011 - 6

GENERIC EVALUATION FLOW CHART

GENERIC SCREENING FLOW CHART (BY USER)

JUSTIFICATION DOCUMENTS RESULTS OF THE SELECTION

FUNCTION	TYPE	MNFCT	CASE	TEMP RANGE	RISK ANALYSIS CONCLUSIONS
VIDEO AMPLIFIER	AD8028AR	AD / US	SOIC 8	-40°C/+125°C	 AD major manufacturer = no risk for front / back end Transient sensitivity
ANALOG SWITCH	MAX313L	MAX / US	SOIC 24	-40°C/+85°C	MAXIM = risky manufacturer => CA to be anticipated
ANALOG SWITCH (Back up)	ADG451BR	AD / US	SOIC 16	-40°C/+85°C	 AD major manufacturer = no risk for front / back end TID (at VLDR) Transient sensitivity
CLOCK DRIVER	EL7457CS	INT / US	SOIC 16	-40°C/+85°C	Urgent CA to identify mask reference for SEL test
ADC	C AD7621AST AD/U	AD / US	LQFP 48	-40°C/+85°C	AD major manufacturer = no risk for front or back end
DAC	MAX521 BEWG	MAX / US	SOIC 24	-40°C/+85°C	MAXIM = risky manufacturer => CA to be anticipated

All the space you need 16 March 2011 - 9

EVALUATION RESULTS DIE & PACKAGE

ТҮРЕ	PROCURED LOT	CONSTRUC- TION ANALYSIS	OUT GASSING	ASSY QUALIF	EVAL. RESULTS
AD 8028 One DC		ОК	ОК	ОК	ОК
MAX 313	One DC	FAILED	Not done	Not done	REJECTED
ADG 451	One DC	ACCEPTABLE	ОК	ОК	ОК
EL 7457	One DC	ОК	ОК	ОК	ОК
AD 7621	One DC	ОК	ОК	ОК	ОК
MAX 521	One DC	ОК	ОК	ОК	ОК

All the space you need 16 March 2011 - 10

EVALUATION RESULTS ELECTRICAL & ENDURANCE

ELECT. CHARACT. @ -40°C, 25°C, 85°C,125°C		ELECT.CHARACT. @-40°C, 25°C,LIFE TEST85°C,125°C		
AD 8028	Acceptable	1000H @ 125°C	0 reject	
ADG 451	Acceptable	1000H @ 125°C	0 reject	
EL 7457	Acceptable	1000H @ 105°C	0 reject	
AD 7621 Acceptable		1000H @ 115°C	0 reject	
MAX 521	Acceptable	1000H @ 125°C	0 reject	

All the space you need

EVALUATION RESULTS TOTAL DOSE (RVT)

		DOSE RATE	TID RESULTS	
VIDEO AMPLIFIER	AD 8028 AR	140 Rad(Si) / h	OK up to 30 Krad	
ANALOG SWITCH	ADG 451 BR	LDR = 40 Rad(Si) / h VLDR = 3.3 Rad(Si) / h	LDR: Is (OFF) < 0.6 Krad VLDR: Is (OFF) < 0.3 Krad	
CLOCK DRIVER	EL 7457 CS	40 Rad(Si) / h	OK up to 30 Krad	
ADC	AD 7621 AST	140 Rad(Si) / h	OK up to 30 Krad	
DAC	MAX 521 BEWG	40 Rad(Si) / h	OK up to 30 Krad	

All the space you need 16 March 2011 - 12

EVALUATION RESULTS HEAVY IONS & PROTONS

	SEL or SEB/SEGR	SEU	SET	PROTONS
AD 8028	SEL Insensitive	Insensitive	Sensitive	Insensitive up to 190 MeV
ADG 451	SEL Insensitive	Insensitive	Sensitive	NA
EL 7457	SEB sensitive SEGR Sensitive	Insensitive	Sensitive	NA
AD 7621	SEL Insensitive	SEU sensitive SEFI sensitive	Insensitive	Insensitive up to 190 MeV
MAX 521	SEL Insensitive Sensitive		Sensitive	NA

All the space you need

SCREENING RESULTS

	ELECTRICAL TESTS BEFORE BI @ 3 T°	DYNAMIC BURN IN	ELECTRICAL TESTS AFTER BI @ 3 T°
AD 8028	OK (1 reject)	240H @ 85°C	OK (0 reject)
ADG 451	OK (0 reject)	240H @ 85°C	OK (0 reject)
EL 7457	OK (1 reject)	240H @ 85°C	OK (0 reject)
AD 7621	OK (11 rejects)	240H @ 85°C	OK (7 rejects)
MAX 521	OK (0 reject)	240H @ 85°C	OK (0 reject)

All the space you need 16 March 2011 - 14

SYNTHESIS OF EVALUATION AND SCREENING RESULTS

			PROC LOT	EVALUA- TION RESULTS	RVT	SEL or SEB/SEGR	SEU	SET	SCREE- NING
	VIDEO AMPLI	AD8028	One DC	ОК	OK up to 30 Krad	SEL Insensitive	Insensitive	Sensitive	ОК
	ANALOG SWITCH	MAX313	One DC	LOT REJECTED (MAVERICK LOT)				_OT)	
	ANALOG SWITCH	ADG451	One DC	ОК	Sensitive (VLDR)	SEL Insensitive	Insensitive	Sensitive	ОК
,	CLOCK DRIVER	EL7457	One DC	ОК	OK up to 30 Krad	p to SEB/SEGR rad Sensitive Insensitiv		Sensitive	ОК
	ADC	AD7621	One DC	ОК	OK up to 30 Krad	SEL Insensitive	SEU + SEFI sensitive	Insensitive	ОК
	DAC	MAX521	One DC	ОК	OK up to 30 Krad	SEL Insensitive	Sensitive	Sensitive	ОК

All the space you need 16 March 2011 - 15

EXPERIENCE AFTER EQUIPMENTS MANUFACTURING

- 1) 110 FM Proximity Electronic Modules (PEM) manufactured
- 2) 96 FM PEMs already tested
- 3) Feed back after components mounting :
 - No problem during mounting
- 4) PEM electrical performances
 - PEM qualification : successful
 - No application temperature highest than Tmax :
 - +60°C during qualification (QM)
 - +55°C during acceptance (FM).
 - Electrical tests at PEM level showed no drift and a good reproducibility of performances

All the space you need 16 March 2011 - 16

CoC of EEE Components

s document is the property of Astrium. It shall not be communicated to third parties without prior written agreement. Its content shall not be disclose

CONCLUSION - COST SYNTHESIS

- Cost of components selection :

(Initial engineering activities, data collection, results analysis, Justification Document completion)

- Cost of components procurement : 8 types & 8900 components procured 5 types & 2688 available components for FM
- Cost of tests activities : (Evaluation, screening, radiations, ...)

TOTAL AMOUNT (cost of ownership)

350 K€ (27%)

50 K€ (4%)

900 K€ (69%)

1300 K€

All the space you need 16 March 2011 - 17

CONCLUSION - OVERALL EXPERIENCE (1)

- The selection of commercial components has been done for performance reasons (access to high capacity or speed) results in higher performing, reduced size and lighter equipments with less interconnections.
- Successful approach by combining evaluation and lot acceptance test on the FM lot :
 - => It reduces the risk of quick evolution of mask & technology between evaluation and procurement of flight components.
- In 5 of 6 cases => the lot qualification results have been successful.
- Successful management of traceability w.r.t. radiation.
- The use of commercial components induces a lot of engineering activities (selection, JD, evaluation, ...) generating very high non recurring cost :
 - => don't use commercial components for cost saving !

All the space you need 16 March 2011 - 18

CONCLUSION - OVERALL EXPERIENCE (2)

The pop-availability	Strength	Weakness	
of high performing and bigh reliability	 Electrical performances incomparable vs HI REL components 	 Many products on the market LONG PRELIMINARY SELECTION 	
EEE components for the GAIA	I ow mass and small	 Unknown reliability and radiation behaviour 	
mission	packages	\Rightarrow BACKUP SOLUTIONS	
imposed the	\Rightarrow SMALLEST &	REQUESTED	
use of	LIGHTEST	\Rightarrow HARD AND RISKY	
commercial	EQUIPMENTS	EVALUATION TO BE DONE	
components.		\Rightarrow HIGH FINAL COST	
		\Rightarrow SCHEDULE / DESIGN	
I his has been		IMPACTS WHEN EVAL.	
positively proven on		FAILS	
a few types		 Components storage (Nitrogen) 	
a few types.		Preliminary cost evaluation	

All the space you need 16 March 2011 - 19

DON'T BE AFRAID TO USE COMMERCIAL EEE COMPONENTS IN CASE YOU NEED HIGH PERFORMANCES

BUT

DON'T BELIEVE YOU WILL SAVE MONEY BY USING COMMERCIAL EEE COMPONENTS

THANK YOU FOR YOUR ATTENTION

All the space you need 16 March 2011 - 20

ESCCON 2011

ESCC Evaluation and Qualification Programmes

J. Howley, Enterprise Ireland G. Joormann, DLR Köln J. Wong, ESA ESTEC

Programmes- The ESCC System

European space programmes need stable sources and supply of components

- > The ESCC System is centrally positioned to address this need an international system for the specification, qualification and procurement of EEE components for use in Space programs
- ESCC Specification System

 the technical specification of EEE components
 methodologies for component evaluation and qualification
 testing methods / quality assurance / operational provisions

It offers a degree of autonomy for its component technology requirements and forms a basis for development and growth

All ESCC Specifications are freely available from the ESCIES web site. The web address is *https://escies.org*.

Programmes- The ESCC System

Sole purpose of the ESCC System is to provide components for space applications.

A key objective is to improve the availability of strategically important EEE components

It prefers European sources offering competitive performance and costs

≻Key Products include:

- ESCC specification system
- Quality assurance infrastructure
- Qualified Parts List
- Qualified Manufacturers List
- European Preferred Parts List
- ESCIES and Spacecomponents.org

Programmes- The ESCC System

ESCC is a unified and single European system for space component specifications and the corresponding qualification and certification activities.

➢ The System is supported by the signatories to its Charter and its partners contribute resources with their own funding

The Space Components Steering Board (SCSB) is the penultimate body to contribute and supervise the resources to achieve its stated objectives

Programmes- The Perspective

Segment	Programmes	No. of Companies	M€/year	Export, %	ESA %
Total	Ī	companies	5,359	49.9 ²	
Satellite Applications		118	3,081	36.8	21.1
	Telecomm.		1,940	49.9	7.1
	Earth Obs.		938	16.9	36.8
	Navigation		204	-	82.9
Launchers		26	1,069	2.0	-
Science			821	6.5	81.4
	Science		443	-	70.4
	Human Space		342	-	93.6
	Microgravity		36	-	Mainly ESA
Ground Segment		48	387	9.8	-
	EGSE/MGSE		46	28.3	15.2
	Ground Stations		246	8.9	31.7
	Services		95	3.2	-
ESCC System					
	European Space Components	45 (1180 employees)	Est. > 240	N/A	N/A
Lisee System	European Space Components	45 (1180 employees)	Est. > 240	N/A	

Facts and Figures, The European space industry in 2009, Public Issue No. 1, ASD-Eurospace, 2010-06-18, except ESCC, L. Bonora, ESA)

ESCC Evaluation and Qualification Programmes- The ESCC

Organisation of the European Space Components Coordination (ESCC)

ESCC Evaluation and Qualification Programmes- CTB

Programmes- Formulation

Programmes- Executive

The CTB combines the collective participation and needs of European industry, manufacturers capabilities and space agencies for electrical, electronic and electromagnetic (EEE) components in one organization.

It establishes a coherent set of plans that aim to secure standard and strategic components through R & D programs, technology roadmaps and strategic dossiers, including ➤ an Annual Qualification Program (AQP)

The Executive provides the resources to implement the AQP.

ESCC Evaluation and Qualification Programmes – Running Totals

ESCC Evaluation and Qualification Programme- 10 Year Trend Line

ESCC Evaluation and Qualification Programmes- Funding Profile

ESCC Qualification programme

 ESCC qualification is a general and long term authorisation for use in space.

 is based on a 2 step qualification approach:

Evaluation phase + Qualification Testing phase.

- is supervised by the ESCC Executive.

ESCC Evaluation Phase

Elements necessary at the beginning of / early in the Evaluation phase:

- Existing relevant test results and standard reliability data.
 - Draft Detail Specification, if not already existing.
 - Construction Analysis results.
 - Draft Process Identification Document (PID).
 - Domain and Test Vehicles description for Capability Approval/Technology Flow.

Existing relevant characterization results, test results and standard reliability data:

1 Very few EEE parts are specifically designed for space applications due to the low volume and sporadic purchasing/manufacturing requirements.

2 It is critical that all aspects of reliability and relevant known failure modes and mechanisms be addressed.

Draft Detail Specification, if not already existing :

a Ergenerationer Sone Co	TO THE PARTY OF TH		DOCUMENT (REQUE	CH/ ST	ANGE∙ ¤	
	TO BE CO	MPLETE	D·BY·ORIGINATOR ¤		Change request No	4) •
Originator(1)	∙Originator∙sign	ature (2)¤	NSA or ESA representative signat	ture (3)¤	۵	
Jude Neylon¤	Jude R	leglon	John town :		۵	
Affiliation¤	Date:26th Octobe	er∙2007*	Date:7.November.2007*		Page 1 of [4]	(5)¤
Betatherm·Ireland· Ltd.¤	۵		¤		¤	
DOCUMENT AFFECTED¤			Other documents affected (10)			
Doc.·No.·····(6)	Status	7) Title…	·····(8)·¤	¤		
4006/014¤	lssue…5¶ July∙2007¤	THERMI RESIST OHMS A RANGE	STORS (THERMALLY SENSITIVE) ORS); NCT; RANGE 2:000 TO:15:000 T:+25°C WITH A TEMPERATURE OF60 TO:+160°C :¤	Ø		
۵	۵	¤		¤		
Paragraph(s) and page(s) affected				NONE¤		
Pages: 1,5,6,7,8,12, 17¤			¤			
Paragraphs: S	pecification little;	·para.1.1;	Fable 1(a); Note 3 to Fable 1(b);	¤		

Construction Analysis results, for example:

Radiography Analysis

Mechanical Analysis Results

Visual Analysis Results

SEM/EDX Element Analysis

Draft Process Identification Document (PID)

The PID is an instantaneous and accurate picture of the actual manufacturing flow and practices.

The PID includes; amongst others: - specimen of the travellers/route sheets used - detailed flow chart with related manufacturing specifications - list of piece parts and materials used - a list of test equipment and test/inspection procedures - a list of subcontractors and suppliers

Domain and Test Vehicles description for Capability Approval / Technology Flow

The Capability Approval problem - Some components have design features that are tailored to a particular customer requirement, and may be required for a short time and often in small quantities.

Capability Approval solution – Define and evaluate a capability domain, and its boundaries, that will enable both the provision of standard devices and the ability to satisfy specialised needs.

Technology Flow (ESCC QML) issues – require to instil Quality Management (QM) within the manufacturing environment, using Statistical Process Control (SPC) and Process Technology Certification to accelerate the insertion cycle of high quality and reliable component types with emphasis on continuous improvement led by the manufacturer.

ESCC Evaluation Phase Component Selection

ESCC Executive will review existing data and verify that the proposed component is appropriate for evaluation.

If the results are promising, random samples, taken from current production, shall be subjected to a Construction Analysis (CA).

After Construction Analysis, if the decision is to proceed, a Detail Specification will be required at this point.

Components Division Laboratory Support Group

> ANALYSIS REPORT NUMBER CA 0503

THERMISTORS (THERMALLY SENSITIVE RESISTORS), NTC, RANGE 2000 TO 100000 OHMS AT +25°C WITH A TEMPERATURE RANGE OF -60 TO +160°C

BASED ON TYPE G15K4D489, G10K4D453, G2K7D411, G4K7D421, G100K6D487, G15K4D589

ESCC Detail Specification No. 4006/014

ESCC Evaluation Phase Component Selection

- EVALUATION TEST PROGRAMME (ETP):

- Components and technologies are extensively characterized and tested; to destruction wherever possible!
- Tests are designed to:
 - Gauge reliability and lifetime
- Provide stresses that simulate thermal, mechanical, electrical, vacuum and radiation environments
 - Address intrinsic and extrinsic failure modes
 - Determine the margins for these failure mechanisms (these are used in the ECSS-Q-ST-30 derating standard as well as for ESCC Detail Specification parameter derating).

ESCC Evaluation Phase Component Selection

- EVALUATION TEST PROGRAMME (ETP):
- Established in conjunction with the Manufacturer / ESCC Executive
- On a sample representative of the component family unscreened parts (no Burn-In)
 - In order to determine failure modes and margins, it includes:
 - A review of existing reliability data
 - Endurance tests (HTRB, Extended Burn-in, Life Test)
 - Destructive tests (Step-stress, radiation, Environmental/Mechanical/Assembly...)
 - Ancillary specifications ESCC 226xxxx describe the procedure and requirements to create and perform an ETP

EVALUATION OF A MANUFACTURER

• A survey of the Manufacturer's production, inspection and testing facilities is carried out under control of the ESCC Executive, particular attention being given to the existence and adequacy of formal updated documentation and control procedures relating to the component to be evaluated.

• this survey is performed as a formal audit in accordance with the requirements of ESCC Basic Specification No. 20200.

5 DEFINITIONS

In this report, the following definitions are employed:

FINDING - Objective evidence that a control feature of the quality programme or manufacturing process is not implemented in accordance with the requirements.

OBSERVATION - An observed control feature of the quality programme or manufacturing process, which is a cause for concern. A condition that may become a Finding.

COMMENT - A comment to an observed control feature of the quality programme or manufacturing process, which is neither a Finding nor Observation.

A Finding requires a corrective action and an Observation requires consideration by the manufacturer.

EVALUATION OF A MANUFACTURER

Outputs of the Evaluation Phase are:

- Evaluation report
- Applicable Detail Specification(s)
- Final PID
- Final definition of the Domain (if applicable)
- A Generic Specification, if not existing
- Audit report + evidence of completed Corrective Actions Resulting in:

Certification of the Evaluation by ESCC Executive

- Components required for qualification testing must be produced strictly in accordance with the PID.
- Qualification testing of the component must be in accordance with the requirements of the relevant ESCC Generic & Detail Specification.
- Successful completion of the testing phase results in listing on ESCC-QPL.
- A Qualification, once established, is valid up to 2 years.

Requirement for Qualification Approval

Chart II/F2:	Final Production Tests
Chart III/F3:	Burn-in & electrical measurements
Chart IV/F4:	Qualification tests

Test, Record and Report

ESCC Generic Specification No. 4006 - Thermistors Chart III – Burn-In and Electrical Measurements

Parameter Drift Data - Results

- Qualification testing of the component is documented and certified by the manufacturer.
- Non-conformances, failure analysis and DPA results when applicable are closed.
- A Qualification Report is accepted by the ESCC Executive.
- Components meeting the qualification requirements are certified by ESA.
- An ESA logo is applied by the manufacturer to each component meeting all the inspection and test requirements!

ESCC Qualification Phase The expected result!!

Types covered by similarity:			Remarks: Refer to variants table 1(a) in the Detail Specifications for resistance to temperature characteris- tics		
Procurement Specifications		Manufacturer	Nature of Approval	Supervising Authority	Date
Generic			Qualification	ESTEC	Jul 2001
ESCC 4006		MEAS Ireland (Betatherm) Galway Ireland	Extension	ESTEC	Jan 2002
Detail ESCC 4006/013			Extension	ESTEC	Sep 2004
4006/014			Extension	ESTEC	Nov 2006
Characteristics:		Extension	Enterprise Ireland	Nov 2008	
4006/013: Variants 01 to 05 and 07 a 4006/014: Variants 08, 09, 12 and 13 Operating Temperature Range, (*C): '60 to *160 for 4006/014 variants 08, 0	re qualified. are qualified. 55 to *115 for 4006/013 variants 04, 09 and 13	,05 and 06,	Extension	Enterprise Ireland	Nov 2009
	THERMISTORS, (THERMALLY SENSITIVE RESISTORS), NTC, BASED ON TYPES G15K4D489 AND *K3A35*		Current Validity of Qualification		Page
ESCC OPL			Certificate 266 E	Valid Until November 2011	11-01 001

Evaluation & Qualification Programs in Germany

Jürgen Tetzlaff (juergen.tetzlaff@dlr.de), Guido Joormann (guido.joormann@dlr.de) ESCCON, Noordwijk, 15. - 17. March 2011

DLR EEE Parts Projects

Activity	Term	Status
PPH15-Process Evaluation	2003 - 2006	finished
Evaluation and Qualification of Thin Film Chip Resistors	2004 - 2008	finished
Evaluation and Qualification of Cables	2005 - 2009	finished
Qualification of Quartzes and Oscillators	2005 - 2010	in progress
Qualification of Microwave Connectors	2005 - 2011	in progress
Certification of an Assembly and Test House	2006 - 2011	in progress
Qualification of MMIC Local Oscillator	2007 - 2011	in progress
Development and Qualification of PowerMOSFETs	2008 - 2011	in progress
Qualification of Diodes and RF-Transistors	2008 - 2011	in progress
Evaluation of the UMS PPH15x Process	2008 - 2011	in progress
Development of a GaN 1000V Switching Transistor	2007 - 2011	in progress
Capability Approval of L-Foundry	2010 - 2013	In progress
Qualification of RF-Circulators / Isolators	2011 - 2013	planned
Capability Approval of IHP's SG13 Technology	2011 - 2013	planned
Qualification of a fully automatic LTCC Line	2011 - 2013	planned
Feasibility Study of the SiC Diodes Technology	2011 - NN	planned

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Evaluation and Qualification of RF-Connectors

This project shall improve the components availability for the European space users in the area of high frequency connectors. The request for qualified RF-connectors arose from the German manufacturers for space equipment, since connectors are required in lot of space equipment.

Info : www.rosenberger.de/

Qualification of Diodes and RF-Transistors

For automotive und wireless applications, Infineon provides high-quality diodes and microwave transistor chips. On request of German users they shall be packaged in suitable housings and an ESCC qualification of these parts is in progress.

Diodes: BAY6642 (1N6642)

RF-Transistors: BFY640, BFY640B, BFY650B, BFY740B.

Info : <u>www.infineon.com/cms/en</u>/ => discretes

Diodes

RF-Transistor, Micro-X Package

Evaluation of the UMS PPH15x Process

In this program, a delta evaluation of the PPH15x MMIC process will be performed. PPH15x stands for Power PHEMT (Pseudomorphic High Electron Mobility Transistor), a GaAs based technology with 0,15 Micron gate length, the x for a power enhancement of the PPH15 process, which was already evaluated. Life time and reliability tests have been performed. Space evaluation has started.

Development of a GaN 1000V Switching Transistor (1)

Targets

Normally-off GaN transistor technology for space borne power conditioning

Requirements

- Iow on-state resistance
- high breakdown voltage (up to 1000 V)
- Threshold voltage Vth > + 1 V
- Large gate swing > 3 V
- Low leakage currents
- Reproducible process
- Radiation hardness
- High Reliability

Development of a GaN 1000V Switching Transistor (2)

Actual Results

- Stable 3" GaN process
- Positive threshold voltage (+ 1.2 V)
- Large gate voltage swing (5 V)
- → High IDS-max (0.5 A/mm) \rightarrow good trade-off to normally-on devices)
- Low leakage:
 - > off-state drain leakage 10 μ A/mm @ VGS = 0 V
 - on-state gate leakage 10 µA/mm @ VGS = + 5 V
- Good saturation properties
- Transistor-channel conductive if operated in reverse direction
 - ➢ 3rd quadrant operation
 - May be used for "self protection" when switching inductive loads
- Safe transistor operation up to 200°C ambient
 - > IDS decreases with T $_$ CT = -1.3 mA/(mm K)
 - RON increases with T $_$ CT = 43 mWmm/K
 - > Vth constant with T $_$ CT = -0.24 mV/K

→ No thermal run-away situation in p-GaN gate power transistors

50 A device flip-chip mounted in TO 220 package

Capability Approval of L-Foundry

For space applications, less and less semiconductor foundries are available. Recently, the widely used MG2RTP CMOS process from Atmel became obsolete, too.

In preliminary investigations, L-Foundry (Landshut) was determined as suitable foundry. Meanwhile L-Foundry has bought Atmel's foundry at Rousset (F), too.

In a first test step, the suitability of commercial library elements for a radhard design will be verified.

In case of a positive result, an ESCC capability approval will be carried out.

Info : <u>www.lfoundry.com/</u>

Qualification of RF-Circulators / Isolators

There are only two not qualified suppliers in Europe (Chelton [F] and Trak [GB]), who can deliver RF-Circulators / Isolators with required properties :

- High Reliability
- Low Insertion Loss
- High Isolation.

On the other side a German supplier fabricates excellent RF-Circulators / Isolators for their own use.

Therefore, German users asked for the ESCC qualification.

Capability Approval of a SG13 BiCMOS Technology

The SG13 BiCMOS technology is a mixed signal 0.13 µm technology with the focus on high frequencies (up to 140 GHz) and low power CMOS transistors.

In a first step several suitability tests will be performed, prior to developing a radhard library and test circuits for this technology.

Thus a further process for space use will be established in addition to an existing 0.25 μ m technology, which is applicable for frequencies to 20 GHz and is already in the ESCC capability approval.

SiGe HBT $\rm f_{Max}$ versus $\rm I_{collector}$ measured and modeled

Qualification of a fully automatic LTCC Line

A German supplier operates a fully automatic LTCC (Low Temperature Cofired Ceramics) line, which was used up to now for commercial applications.

This line shall be extended for space modules manufacturing and an ESCC capability approval shall be performed. By the extremely high degree of automation of this line, a very small error rate (First-pass yield > 95 %) will be achieved.

Due to the high process reliability of the line, a cost-effective fabrication of small and lightweight MMICs (e.g. up- and down converters or channel amplifiers) will be possible.

Feasibility Study of the SiC Diodes Technology (1) Why Silicon carbide ?

- Space applications need robust and heat resistant components.
- Silicon power semi conductors are more and more reaching their physical limits (higher junction temperature, higher loss), which can lead to the damage of the parts.
- SiC offers excellent material properties and allows components with outstanding electrical characteristics and high junction temperatures.
- → A feasibility study shall examine the use for Space application.

Feasibility Study of the SiC Diodes Technology (2)

Comparison Si ↔SiC

Characteristics	Si	SiC	
Band Gap (eV)	1.1	3.2	
Electron Mobility (cm²/Vs)	1400	900	
Disruptive Field Strength (kV/cm)) 250	> 2000	
Thermal Conductivity (W/cmK)	1,5	4.9	
	Less Defects	High Temperature Strength	
Advantages	Higher Yield	High Ampacity	
Advantages	Lower Price	Chemical Resistance	
		Radiation Hardness	
		Material Hardness	
Drawbacks	High Switching Loss	High Increase of Crystal Defects	
	t High Temperature	Processes difficult to control	
	At Performance Limit	Costly Bulk Material	

Thank you for your attention!

DrIng. Andreas K. Jain	German Aerospace Center	
Head - Standardization and EEE Components	Quality and Product Assurance	
4	Porz-Wahnheide, Linder Höhe 51147 Köln, Germany	
Telephone Telefax E-Mail	02203 601-2954 02203 601-3235 <u>andreas.jain@dlr.de</u>	

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ESCC Evaluation and Qualification Programmes: Certificates

ESCC Evaluation and Qualification Programmes: Benefits

The ESCC products constitute a pillar of product assurance through standardization of EEE components in space programs.

By applying standardization and type reduction space programs benefit in a number of ways:

Components used in designs are applied properly with margin supported by available test data

- > Components are evaluated or qualified to established criteria prior to use
- Quality and reliability of each component is established
- > Components are compatible with equipment manufacturing processes
- Evolution of component quality and significant parameters are under configuration control
- Provides for component obsolescence management
- Component data is collected and stored for retrieval and analysis.

ESCC Evaluation and Qualification Programmes: Benefits

Key Results:

ECI stimulus funding from CNES, DLR and ESA has reinitiated AQP investment

AQP Programs managed by the ESCC Executive since 2005 up by 50%

Number of ESCC qualification certificates since the low of 2006 up by 40%

12.7 % of AQP Programs are self funding

European space component manufacturers 2010 turnover > 240 M€

1200 employees of European manufacturers dedicated to space components

ESCCON 2011

Thank You for Your Attention

J. Howley, Enterprise Ireland G. Joormann, DLR Köln J. Wong, ESA ESTEC

Optoelectronics: risk management of problems encountered

A. Bensoussan Thales Alenia Space, France

e-mail: alain.bensoussan@thalesaleniaspace.com

ESCCON 2011, NOORDWIJK, NETHERLANDS March 15th-17th 2011

CCEL

100181685K-EN

March 16th 2011 ESCCON-TAS-AB

THALES ALENIA SPACE

- Optical Links in Space Application
- Industrialization and Quality concerns vs Risk management
- > Optoelectronic vs Reliability
- Conclusion

Planck - FOG

SMOS – Optical Comms Data and Clock Distribution

Demeter - Optopyro

eesa

Fibre Optics

Current Applications of

PROBA 2 – Fibre Optic Sensor Network

ESTEC

ISS - Optical Communications

(courtesy of ESA : Iain Mckenzie and Nikos Karafolas)

THALES All rights reserved, 2011, Thales Alenia Space

Page 3

COTS Fibre Optic Components in SMOS/MOHA (ESA)

Page 4

ESA's Soil Moisture and Ocean Salinity (SMOS) earth observation satellite using fibre optics.

The optical fibre is used to communicate with the 72 detectors spread over the three arms of the satellite, conveying an optical clock to the detectors and returning a digital optical data signal to the **THALES**

Page 5

Fiber-Optic Sensor System Demonstrator for Proba-2 (ESA)

Fibre Sensor Demonstrator on PROBA 2

First demonstration of a full fibre-optic sensor network in the space environment on a satellite

courtesy of ESA

- → Lightweight < 1,3 Kg</p>
- → Peak Power Consumption <4W</p>
- Central interrogation unit positioned remotely from the sensors
- → Distributed temperatures
- Thruster high-temperature
- → Propellant pressure

eesa

Optical Power budget sufficient to support 100s sensors

ESTEC

Attachment of FOS in the tank and pipes of the Propulsion Subsystem of ESA's PROBA II satellite.

Page 6

• High Bandwidth 0,85 µm laser Free Space Communication on ARTEMIS SILEX (EADS) and LOLA application (EADS, TAS)

View SILEX Free Space Communications (courtesy EADS Astrium)

LOLA demonstrator laser diode : Operating conditions: 320 mW p-p, OOK, 50 Mbps THALES

Advanced Photonic for Flexible Telecom payloads

Telecom satellite & payloads - Future Broadband Solutions (TAS)

- flexible complex payloads : coverage, connectivity, frequency plan, bandwidth allocation ...
- > 100 RF channels (10's of MHz) over 10's of antenna beams
- critical requirements in terms of mass, volume & power consumption
- future-proof solutions = transparent payloads (analogue or digital)

Advanced Photonic for Flexible Telecom payloads

Microwave photonic repeater sub-systems (TAS)

Microwave photonic repeater concept

- optical generation & distribution of LO's
- optical frequency-mixing
- optical cross-connection of µ-wave signals

Applications : flexible analogue repeater

- Frequency-independent (C/Ku/Ka), broadband design : cost and planning advantages
- Flexible connectivity : in-orbit reconfiguration

Major achievements

ThalesAlenia

A Thales / Finmeccanica Company Space

- ESA SAT 'N LIGHT study, repeater concept & architectures
- BB demo
 - Ka-band LO distribution
 - Optical Ka/C down-conversion
 - RF channel cross-connection (by MOEMS)
- Validation of concept & performance

Page 8

In USA

Page 9

• JWST (NASA) and Smart technologies and MOEMS for Extremely Large Telescope (ELT) instruments (NASA).

Micro-shutters manufactured by NASA/GSFC

http://www.nasa.gov/topics/technology/features/micro shutters.html **THALES**

NASA Lunar Reconnaissance Orbiter (NASA GSFC)

Page 10

Series of missions towards the exploration of the Moon and Mars for the purpose of providing remote human habitat bases for planetary study

The Mercury Laser Altimeter consisted of four telescopes with fiber coupled from each to four individual detectors

Lunar Orbiter Laser Altimeter (LOLA) and Laser Ranging

<u>Photos from paper M. Ott : Fiber free Space</u> <u>Optics.</u>

g. 7. LRO Laser Ranging Configuration Concept [11] All rights reserved, 2011, Thales Alenia Space

Page 11

DIAMOND AVIM Connectors for Space Environments (NASA and ESA)

Mini-AVIM

Miniature fiber optic connector for Space, MIL and harsh environment application

- Basic Specification ESCC 2263010, ETP for Simplex Optical Fibre Connector Sets released in 2006.
- Part of an ongoing ECI Phase 2 activity with Diamond (Switzerland), following specification will be proposed to the PSWG in 2011:
 - Revision and updating of the ESCC Basic
 Specification 2263010
 - **Generic Specification** (ESCC qualification): Simplex fibre optical connector.
 - **Detail Specification**: Simplex optical fibre connector based on type AVIM.
 - **Detail Specification**: Simplex optical fibre connector based on type mini-AVIM.
- In the frame of 2 parallel ongoing GSTP activities T&G (Norway) and Fibre Pulse (Ireland), the ECSS-Q-TM-70-51 Technical Memorandum on the fibre cable assembly will be updated (2011-2012).

Page 12

Qualification of a Caesium optical atomic clock in Pharao (EADS SODERN/CNES)

Multi-mode ribbon fiber

(Credit : Ultra Comm and

Fresnel

reflection

Lense

array

KEY OPTICAL TECHNOLOGIES AND PRODUCTS

digital processors

flip-chip

Flip-chip assembly with

the

VCSEL/PIN.

ANN

Si epi layer

SOS IC

(transparent)

Page 14

courtesy of LUCENT Technology

Opto-Microwave Repeater concept *MOEMS switching matrix*

ROSA photo-receiver

THALES

Who is going to use Optoelectronic system architectures as innovative solutions and for what specific and strategic reasons ?

How to be ready to adopt new technologies ?

- In High tech, products are often more costly and complicated
- Therefore market adoption of a technology product is dependent upon helping customers reduce perceived risk.
- In the risky world of high tech, the customer will not rely only on the word of the provider.

These new technologies are disruptive for Space application.
How to manage their introduction ?
The TALC (Technology Adoption Life cycle) in the High-Tech Space market.

All rights reserved, 2011, Thales Alenia Space

Discontinuous innovations require an infrastructure to prosper and proliferate.

Page 18

Discontinuity has significant (and sometimes unintended) consequences.

Proven benefits Existing

infrastructure

New Benefits

New infrastructure

Discontinuous innovations foster new power

structures ... if they get adopted.

HOW, WHO, WHEN TO MANAGE SUCH DISCONTINUOUS INNOVATIONS ?

> All is about risk assessment: TALC and Valley of Death version applies to discontinuous innovations, meaning the product forces the user to change behaviour.

THALES

Page 19

How to adopt new technologies ?

Customer's decision process is based on finding objective information from reliable sources, something the vendor cannot provide.

Have you ever had someone call and ask you what kind of computer to buy ? This is a common method of lowering risk by gathering objective evidence.

Industrialization concerns

Quality constraints

All rights reserved, 2011, Thales Alenia Space

We must consider :

- **THE COMPLEXITY AND VARIETY OF PRODUCTS OR FUNCTIONS**
- HIGH TECHNOLOGY LEVEL PRODUCTS (from micro-electronics, Quantum

Physics, Photonics, interaction light with matter (2D and 3D)),

- **RAPID EVOLUTION OF THE TECHNOLOGIES AND PRODUCTS**
- CONSTRAINTS AND STRESS ENVIRONMENTS (Thermal management, radiation,

vacuum, mechanical including vibration and acceleration, ...)

BUILT AND DESIGN INNOVATIVE APPLICATIONS (new functions for new concepts, risk management, quality control and proof, design for performance and Iong term lifetime, ...)

Industrialization concerns

Quality constraints

For a pragmatic approach.

For what purpose ?

Which level of integration ?

On which parameters ?

How to define stress conditions ?

Who will be responsible ?

Which methodology ?

All rights reserved, 2011, Thales Alenia Space

Existing Quality assurance tools

for Micro-Opto-Electronics

European Space Agency

• ECSS-Q-ST-60-05: Generic procurement requirements for hybrid microcircuits.

JEDEC

- JEDEC JESD49 Procurement Standard for Semiconductor Die Products Including Known Good Die
- JEP149 : Application Thermal Derating Methodologies
- JEDEC-13 committee approved formation of Fiber-Optic Test & Qualification for Harsh Environment Applications Committee JEDEC 13.6/SAE Committee
 - Objective: Bring fiber optic community to a standards level enjoyed in the semiconductor marketplace – i.e. QPL/QML for fiber-optic components.

MILITARY

- MIL-PRF-19500, General Specification for Semiconductor Devices
- MIL-PRF-38534, General Specification for Hybrid Microcircuits
- MIL-PRF-38535, General Specification for Integrated Circuits Manufacturing
- MIL-STD-883 Microelectronics Test Methods, and Procedures,
- MIL-HDBK-781A: Handbook for reliability test methods, plans and environments for engineering, development, qualification and production.

OTHER

 TELCORDIA GR-468-CORE : Generic Reliability Assurance for Optoelectronic Devices used in Telecommunications Equipment

Page 26

Optoelectronics and Reliability Handbook

Page 27

To prepare Quality Standards assurance documents, it is needed :

- to prepare an handbook document
- to synthesize and to present the best practices on design, testing, industrialization, usage, quality control and production on optoelectronic products for end-use in Space Application.
- A tentative was initiated to work on a common document titled :

"OPTOELECTRONICS and RELIABILITY HANDBOOK"

Today, this initiative was agreed to be enlarged and more deeply activated thanks to the effort of the existing Space community and supported by the CTB Photonics WG.

Optoelectronics and Reliability Handbook

Page 28

The guide is foreseen to be a high technical synthesis for :

- understanding the various aspects of Opto-Electronic devices
- ✓ behaviors under Space Environment constraints
- Semiconductor material properties and device structures along with the final products (Emitters, Receivers, Sensors, Opto-Electronic functions, passive Opto-Electronic functions)
- ✓ Performance and reliability aspects of Opto-Electronic devices.
- ✓ Failure mechanisms and analysis
- ✓ Quality assurance and qualification methodologies overview.

It will present in details Opto-Electronic device designs, packaging, development, manufacturing, industrializations, application usage, test and controls, screening sequences, qualification procedures and test methods, environment effects (Radiation, vacuum, thermal, mechanical, long term and end of life, ...) and will help the reader to understand the means of developing suitable qualification plans and demonstrate high reliability equipment achievement using optoelectronic products.

CONTENT OF THE HANDBOOK

Transverse thematics

Page 29

The content of this handbook is composed of chapters written by acting the contributors as honorary, benefactor or active members.

"OPTOELECTRONIC and RELIABILITY HANDBOOK"

How to prepare this handbook ? It is proposed a WIKI platform.

Username:	
Password:	
	Log-in

Open to anyone would like to participate in a partnership build up based on ECM :
 Enterprise Content Management : a collaborative platform open to all external partners.
 A secured browser :

https://www-ecm.thalesaleniaspace.fr/ecm

THALES All rights reserved, 2011, Thales Alenia Space

Page 30

,	ThalesAlenia	"OPTOELECTRONIC and RELIABILITY HANDBOOK"
	Live	Page 31
		A secured browser :
	Username:	
	Password:	https://www-ecm.thalesaleniaspace.ir/ecm
	Log-in	
	L	

Please ask me for a free access, you will have a dedicated login and individual password attributed.

E-mail: alain.bensoussan@thalesaleniaspace.com

ThalesAlenia A Thales / Finmeccanica Company Space	"OPTOELECTRONIC and RELIABILITY HANDBOOK"			
Adresse 🛃 https://www-ecm.thalesaleniaspace.fr/ecm/llisapi.dll?func=ll&objID=289779&objAction=browse				
ThalesAlenia	BENSOUSSAN Alain (Logon) Monday, 04/10/2010 T0066111 Personal Frontpage			
Home Personal 🕶 Help 🕶				
Home Personal + Help +		1		

Navigation Menu	⊗				
Community Directory	ommunity Directory	Part Communities			
Personal Frontpage	-	My Communities	New Communities		
My Questions	Questions	Type Name		Role	
Questions Volume)NICS P.A.Guideline 💌	Community Manager	
		🔁 view more			

Forums Frequent Contributors New Forums Recent Topics FORUM 1 - SPACE APPLICATIONS [17/08/2010 13:33] This forum is open to collect and exchange information regarding the following topics. Please don't ... [Forum - Space application]

FORUM 2 - FAILURE ANALYSIS

[17/08/2010 13:41] This forum is open to collect and exchange information regarding the following topics. Please don't \dots [Forum - Failure Analysis]

DOCUMENT SHARING PLATFORM

Page 33

>Industrialization concerns and Risk management

> Quality and Reliability Needs

> Optoelectronic and Reliability handbook

Acknowledgements:

Thank you to my colleagues for their valuable inputs in the overview of Space application :

Iain McKENZIE (ESA) Nikos KARAFOLAS (ESA) Stephan HERNANDEZ (ESA) Olivier GILARD (CNES) Gianandrea QUADRI (CNES) Stephane MARIOJOULS (ASTRIUM) Melanie OTT (NASA) Chuck TABBERT (Ultra Communication)

Thank you

European Space Components Conference.

Challenge for Advanced Payloads: Next generation ASICs, FPGAs and advanced Conversion components needs.

> Louis Baguena: Thales Alenia Space Mark Childerhouse: EADS Astrium

> > ESTEC, 15-17 March 2011

All the space you need
- Many extremely valuable and highly strategic European capabilities are dependent upon space borne systems to deliver telecommunications, navigation, civil and military observation and television services.
 - These systems have become ever more complex and this trend will continue into the future.
 - This trend requires ever more complexity in the electronics and this can only be achieved in flight payloads efficiently by deploying highly integrated ASICs and FPGAs, as well as high end standard components such as ADC, DAC.
 - Unfortunately, many of these technologies are subject to ITAR restrictions and the most advanced of these may be difficult to access by European satellite manufactures.
- The purpose of this presentation is to highlight the required performances of these components and to emphasise the technology gap to be achieved.
 - If this gap can be closed, or even surpassed, in a reasonable timescale, this would significantly advantage the European space industry.

All the space you need Date – 16th March 2011

State-of-the-art

 Both companies AST & TAS are involved in telecom domain building telecommunication systems based upon Integrated processors either in OBP or Transparent processors

ASIC main features used in Processors

- One ASIC implementing main required functions for transparent processors such as Demux, Mux
- Implementation

•ATMEL ATC18RHA 0.18 μm

132 mm² core area, Packages up to 625 LGA
Complex Logic embedding RAMs, meaning up to 5 M equivalent gates with system frequency over 300 Mhz

Power: up to 8W depending upon configuration

All the space you need Date – 16th March 2011

ASIC

- Extremely large and complex ASIC development
 - Stretching the technology in all parameters: area, speed and I/O.
 - Recent ASICs at limits of qualified European 180nm technology
- New applications will require Deep Sub Micron ASICs as an enabling technology in the coming years.
 - Particularly in Telecom to improve bandwidth and channels to be handled, but also in High Performance Data Handling, both demanding
 Higher integration, lower power/gate, higher interconnection.
- Main requirements are:
 - Up to 20 million equivalent gates integration capabilities
 - Implementation of embedded HSSL (High Speed Serial Links) up to 10 gbps
 - Implementing macros such as RAMs and PLLs as a minimum
 - System frequency capability in the range of 3 to 400 Mhz

ASIC

- ASIC technology offerings from US companies will include 90nm from 2012 - but access will be restricted.
- In 2008 ESA started a project to develop European ASIC technology
 - STMicroelectronics KIPSAT
 - Supported by Astrium and Thales Alenia Space.
 - Radiation hardened 65nm ASIC libraries
 - Multi Gbps HSSL are a key requirement of any DSM offering. Multiple HSSL inside ASICs and stand alone chips
 - High PIN count packaging with high power dissipation capabilities will be a key enabler.
- Secondary users of DSM 65nm technology
 - A move to DSM ASIC is not compulsory for many applications.
 - However, there may be considerable performance, power, integration and test benefits.
 - Price is critical for this market segment.

FPGA

- FPGAs are preferred over ASICs in some cases
 - Smaller missions that do not have highly parallel architectures.
 - Missions with low or moderate processing rates.
 - Functions where the power and gate density overhead of the FPGA technology is manageable.
 - Functions that are control and configuration orientated.
 - Functions that might be subject to late changes.
 - Missions that cannot afford the ASIC costs or timescales.
- Many recent equipments have used anti fuse based FPGA.
 - MicroSemi RTAX, ~10K cells, ITAR restricted.
- Within Europe, comparative FPGAs are expected to be available soon.
 - Atmel ATF280K, ~14K cells in 2011. ATF450K, ~23K cells in 2012
- Offerings from US companies will include high density FPGAs (>80K cells) from 2011/13.
 - Xilinx Virtex5 SIRF, MicroSemi ProASIC4

All the space you need Date – 16th March 2011

FPGA

- In 2009, a consortium lead by Atmel proposed a new high density FPGA development to the EC.
 - Atmel RAHDHIFFS FP7 proposal based on Abound Logic architecture targeting 65nm technology.
 - Supported by Astrium and Thales Alenia Space.
 - Unfortunately, this development has not started.
 - European satellite manufacturers continue to encourage the development of ITAR free, very large cell count FPGAs.
- Emerging US FPGA technologies might be used in future if their suitability is established.

Conversion

- ADCs/DACs are key components of digital satellite payloads.
- Without ADCs/DACs, payload processors for telecommunication, navigation, Earth observation and space science satellites would simply not exist.
- ADCs and DACs have been flown on all missions where digitalization equipments are used.

ADC/DAC specification requirements to fulfil future customer needs

- Single power supply rail devices
- Low power consumption, i.e. < 2W</p>
- ENOB performance > 11 bits
- The ability to synchronise multiple devices
- The ability to null part-to-part spreads
- No in-band, non-carrier related spurs
- Wideband ADCs
- Return-to-zero DACs

All the space you need Date – 16th March 2011

Conversion

- European ADC/DACs must offer technical and commercial advantage to European satellite manufacturers when competing for global satellite contracts.
- European ADC/DACs which offer comparable performance to existing parts and enter the market late will never succeed as there is no added value for European payloads and the cost to re-design is too expensive.

All the space you need Date – 16th March 2011

Summary

- There is a clear need for DSM ASIC technology with HSSL to enable:
 - Next Generation Telecom Payload and High Performance Data Processing Products
 - Attractive pricing would further broaden the application scope and subsequent part quantities.

FPGA

- For moderate cell count devices (>10K) US parts are available now.
 - Comparative European FPGA parts are expected in 2011/12.
- For very large cell count devices (>80K) US providers have indicated availability in 2011/13.
 - European satellite manufacturers continue to support the development of ITAR free, very large cell count FPGAs.

ADC/DAC

European parts must offer a technical and commercial advantage.

Questions?

ESCCON 2011 European Space Components Conference

March 15-17, 2011

Challenge for advanced payloads : Next generation ASICs, FPGAs and Advanced Conversion components Development

> Florence MALOU, David DANGLA - CNES Laurent HILI, David MERODIO - ESA

- DSM Technologies
- DSM Program
- Data Converters
- ASIC technology
- FPGA
- Conclusion and way forward

Space needs DSM technology

- The availability and performance of European components is a key issue for European Industry to deliver the next generation of digital payloads
- The Deep Sub Micron (DSM) initiative, coordinated within the frame of the CTB, identified critical technologies for next generation telecommunication satellites :
 - Broadband ADC and DAC
 - HSSL
 - digital ASICs
 - FPGA.
- ESA TRP, CNES Strategic components and European Community FP7 budgets have been used to develop and evaluate, according to ESCC standards, these strategic components and technologies, with requirements :
 - Rad-hard (100Krad), SEL immune,
 - Reliable (20 years lifetime)
 - Operating in military temperature range (-55°C/+125°C)

Those programs will improve satellites manufacturers competitiveness by enabling an independent European components procurement

ESCCON 2011

- DSM Technologies
- DSM Program
- Data Converters
- ASIC technology
- FPGA
- Conclusion and way forward

DSM Technologies

Moore law

- According to Moore's Law, technology are still speedily evolving
- The downscaling of minimum dimensions enables the integration of an increasing number of transistors on a single chip
- DSM technology = 90nm and beyond
- Payload Processor ASIC requirements (10-30 Millions gates, 6Gbit/s Serial I/Os, Low dissipation ...) and Next Generation general purpose ICs (NG-Microprocessor, NG-FPGA) are only achievable with Deep Sub Micron

Source: 2009 ITRS Executive summary

DSM Technologies

Reliability

- Process development of DSM technologies is becoming more and more challenging
- The rising reliability concerns are closely related to :
 - the reduction of critical dimensions,
 - the increase in electrical field strength and in interconnections current densities
 - and to the use of new materials/processes.
- New preponderant Failure mechanisms :
 - Hot Carrier Injection (HCI)
 - Negative Bias Temperature Instability (NBTI)
 -

Source : Subhasish Mitra (Stanford University),2005

DSM Technologies

Mandatory

- **To insure Reliability for space DSM technology :**
 - DSM lifetime has to be early taken into account
 - DSM reliability parameters have to be correctly chosen and modeled for lifetime simulation purpose
 - Manufacturer involvement is a critical issue : close relationship is needed

- Introduction
- DSM Technologies
- DSM Program
- Data Converters
- ASIC technology
- FPGA
- Conclusion and way forward

¢ <u>cnes</u>

DSM Program

Combining ESA and CNES efforts and budgets

- Introduction
- DSM Technologies
- DSM Program
- Data Converters
- ASIC technology
- FPGA
- Conclusion and way forward

cnes

Data Converters

E2V EV10AS180 Low power 10-bit 1.5 Gsps ADC

ESA TRP - 900K€+ COMETS - European Community's 7th FP under grant agreement n° 242521 - 2M€

- Objective : Development and ESCC evaluation of the E2V EV10AS180 1.7W L-Band 10-bit 1.5 Gsps ADC
- Consortium : E2V(F), INFINEON (G) , TAS (F), ASTRIUM (UK), CNES (F), CNRS IEMN, XIIM (F)
- Schedule : T0 = Feb 2008 End = Q3/12

Main Features

1.5 Gsps Guaranteed Conversion Rate Selectable1:1/2/4 DEMUXCI-CGA255 PackageB7HF200 SiGeC technology from Infineon (G)Low latency < 4 cycles times</td>

Key Performances

- 2.2 GHz Full Power Input Bandwidth (-3 dB)
- Single Tone Performance @ Fs=1.5Gsps :
 - SFDR = -60 dBFS, ENOB = 8.5 Bit; SNR = 55 dBFS at Fin = 750 MHz @-12 dBFS
 - SFDR = -60 dBFS, ENOB = 8.4 Bit; SNR = 53 dBFS at Fin = 1800 MHz @-12 dBFS
- Broadband Performance:
 - NPR = 44 dB at -13 dBFS Optimum Loading Factor in 1st Nyquist
 - NPR = 43 dB at -13 dBFS Optimum Loading Factor in L-band
- Status :
 - Design Completed with First prototypes showing very good dynamic performances but still some improvements needed design respin
 - Design respin completed
 - Final Silicon under electrical characterization by E2V
 - ESCC evaluation will start in Q2/2011

EV10AS180 ADC in EPPL in Q3/12

E2V Low power 12-bit 1.5 Gsps ADC

COMETS - European Community's 7th Framework Programme under grant agreement n° 242521 - 2M€

- Objective : Design and Characterization of the 12-bit ADC by E2V and end-users
- Consortium : E2V(F), INFINEON (G) , TAS (F), ASTRIUM (UK), CNES (F), CNRS IEMN, XIim (F)
- Schedule : T0 = May 2010 Duration : 36 months
- Key Features :
 - 1.5Gsps conversion rate (no on-chip interleaving)
 - L band application
 - Selectable ratio DMUX output (1:1/1:2)
 - Low latency
 - User friendly feature
 - LVDS compatible
 - B7HF200 SiGeC technology from Infineon (G)
- Status :
 - Ongoing characterization work for improved B7HF200 technology device modeling
 - by IEMN and XLIM
 - Test chip under validation with encouraging preliminary results Single Tone Performance @ Fs=1.5Gsps :
 - SFDR < -70 dBFS, ENOB = 9.4 Bit; at Fin = 750 MHz @-12 dBFS
 - SFDR < -70 dBFS, ENOB = 9.3 Bit; at Fin = 1800 MHz @-12 dBFS

SiGeC B7HF200 technology cross-section

12-bit ADC validated prototypes in Q2/13

Data Converters

E2V EV12DS130 Low Power 12-bit 3 Gsps DAC with 4/2:1 MUX

CNES Strategic Component Plan – 890K€

- Objective : Development and ESCC eval. of the 12-bit 3 Gsps DAC
- Contractor : E2V(F)
- Schedule : T0 = Nov 2009 End = March Q3/12

Main Features :

- 12-bit resolution
 3 Gsps Conversion rate
- + 4:1 or 2:1 built in MUX (selectable) 1.3 Watt Power Dissipation
- NRZ, Narrow RTZ, 50% RTZ, RF modes
 100Krad
- Ci-CGA255 Package, B7HF200 SiGeC technology from Infineon (G)
- Key Performances (charact. results):
 - Time domain: Full swing Rise Time=60ps
 - Broadband : NPR at -14dB loading factor, and Fs=3Gsps
 - 1st Nyquist (NRZ or NRTZ): NPR= 47.4 dB → 9.4 Bit equivalent
 - 2nd Nyquist (RTZ or RF): NPR= 40 dB → 8.2 Bit equivalent
 - 3rd Nyquist (RF): NPR= 38.5dB→ 7.9 Bit Equivalent
 - Single tone (see plots of the four modes):
 - Pout for Fout from 100MHz to 4.5GHz at 3Gsps
 - SFDR (dBc) and HSL(dBm) four Fout from 100MHz to 4.5GHz Aout=-3dBFS, 3Gsps (Bottom plots)
- Status :
 - Design completed in March 2010
 - Silicon under electrical characterization to assess that is the final one
 - ESCC evaluation will start in April 2011

Données Freg Out

EV12DS130 DAC in EPPL in Q3/12

-75

- Introduction
- DSM Technologies
- DSM Program
- Converters
- ASIC technology
- FPGA
- Conclusion and way forward

65nm CMOS technology

- 65nm-LP CMOS from ST France : European technology, ITAR free
- Payload Processor ASIC requirements (10-30 Millions gates, 6Gbit/s Serial I/Os, Low dissipation ...) are only achievable with Deep Sub Micron
- Next Generation general purpose ICs also need DSM: NG-Microprocessor, NG-FPGA
- 65nm CMOS commercially qualified in 2007
- 65nm CMOS Core Process :
 - Dual / Triple Gate Oxides
 - Dual / Triple Threshold Voltages for MOS Transistors
 - 7-9 Full Copper Dual Damascene Interconnect Levels
 - 0.20µm metallization pitch
 - Low K (dielectric)
- Characteristics :
 - 750 kgates/mm2
 - 2GHz stdcells
 - 5.7nW/(MHz x gates)
 - + 1.25-7.5GBit/s High Speed Serial Link (HSSL) modules
 - Flip-Chip packaging needed

ST proposed its CMOS 65nm-LP process for space Reliability maximization and Radiation hardening at process and design stages

Reliability maximization

- Systematic application of ST Design in Reliability (DiR) methodology :
 - focusing HCI and NBTI with dedicated tools for ageing simulations
 - Eventual specific layout rules for reliability enhancement
- Application of ST Design for Manufacturing (DfM) :
 - Study of tighter controls at process level
 - Analysis of reliability figures from Std qualification

- ST has built an industrial flow which allows a full coverage of reliability effects all along the product value chain
- Reliability tests will be also performed during ESCC evaluation

Radiation hardening

- Rad-hard capabilities measured under ESA contracts (ST 130nm, 90nm, 65nm and 45nm)
 - No current increase seen up to 300krad(Si) TID
- SEL-free with Deep-N well process option

- SEE/SETs fault injection techniques for Digital and Analog blocks sensitivity analysis
- Usage of existing Robust cells, TMR
- Hardening of clock-trees against SETs
- Shadowing of configuration registers + scrubbing
- Development of Rad-Hard new cells
- Layout techniques

ESCC Evaluation

Evaluation Test Programme :

- Representative Test chips manufacturing of the Space library
- Electrical characterization of representative the Test chips
- Reliability tests addressing NBTI and HCI to confirm life time of 20 years @ Tj=110°C
- Radiation tests : TID, SEE under heavy ions and protons
- Construction analysis

TC1 (rad hard library):

TC4 (commercial library subset):

65nm space library in EPPL in Q3/12

ESCCON 2011

Quatuor HSSL

Functional specification :

- 1 clock slice + 4 data slices
- 24 // LVDS port in + 24 // LVDS port out at 375Mhz DDR max
- 24 digital IOs to support I²C, SPI, UART, JTAG, TIC, MDIO protocols
- Max Serdes rates are :
 - 25Gbps Tx simplex
 - 25Gbps Rx simplex
 - 50Gbps full duplex with 4 active lanes (25Gbps Tx / 25 Rx). Full duplex mode limited to 2 active lanes due to power dissipation. 12.5Gbps Tx / 12.5Gbps Rx

Statuts :

- Design completed under KIPSAT ESA TRP
- 1st silicon available in Q3/10
- Electrical characterization on going :
 - · Functionality validated, some minor bugs identified
- Heavy ions tests report and Preliminary reliability test on going

HSSL + IP completion is planned under new ESA TRP

4 x 6.25Gbps HSSL prototypes available

- Introduction
- DSM Technologies
- DSM Program
- Converters
- ASIC technology

FPGA

Conclusion and way forward

¢ cnes

FPGA

Current status :

- ACTEL is the leader but without reconfiguration capabilities with up to 500Kg/100MHz, process 150nm
- ATMEL is coming with ATF280F and ATF450, SRAM based, for a complexity of 280Kg/50MHz and 450Kg/75MHz.

The needs for the Next Generation European reprogrammable FPGA are :

- a DSM technology,
 - such as the specific 65 nm CMOS process technology currently developed at ST
 - current US FPGA space program is the "SIRF " from Xilinx (SEU Immune Reconfigurable FPGA) based on their Virtex-5 family.
- a new field reprogrammable logic architecture with the associated tools,
 - such as already existing (ex-)Abound Logic FPGA architecture developed in Europe and whose main features are :
 - a highly hierarchical architecture allowing for very deterministic propagation times, gates utilization ratio as high as 90%, low operating power and half the bit stream size of any of their competitors,
 - a good trade off between programmable logic, on one side, and memory and mathematical function blocks, on the other side.

Xilinx Virtex5 SIRF	ATF280F	ATFS450	NG-FPGA
450 MHz	50 MHz	75 MHz	tbd
844 IOs	308 IOs	214 IOs	tbd
1.3 Mgates	280 Mgates	450 Mgates	1-2.4 Mgates
65nm (TSMC)	180nm (LFoundry)	150nm SOI (OKI)	90nm/65nm (UMC/ST)
Mature HW architecture	Old, limiting HW	Old, limiting HW	Advanced new HW IP
Mature SW	Old, limiting SW	Old, limiting SW	Advanced new SW IP

ATMEL/OKI/HIREC ATFS450E 450Kg FPGA on OSC 0.15µm SOI technology

CNES Strategic Component Plan – 800K€

- Objective : 450Kg FPGA Development (Joint ATMEL and HIREC development with CNES and JAXA support)
- Contractor : ATMEL (F)
- Schedule : T0 = Q4/08 End = Q3/12
- Key Features :
 - 450K equivalent ASIC gates□ 152x152 core cells
 - 75 MHz internal performance
 - 3.3V and 1.8V programmable IO and 1.5V array bias voltages
 - 8 Global SEU/SET immune Clocks
 - OSC 150nm SOI process□
 - Package MQFPF256 (118 IOs), MQFPF352 (214 IOs)
 - Latch-up free SEU/SET free at LET of 64 MeV/mg/cm² □ 100 krad

- Status :
 - Design completed in Q4/10
 - Silicon under assembly for electrical characterization
 - Prototypes availability : Q3/11
 - ATMEL industrialization and internal Qual : Q3/12
 - ESCC evaluation report (Activity to be funded): Q1/13

ATFS450E FPGA in EPPL in 2013

¢ cnes

FPGA

1Mg – 2.4Mg Rad-Hard reconfigurable FPGA based on a new architecture

ESA TRP- High density European rad-hard SRAM-based FPGA :

Abound-Logic-based first validated prototypes – 2M€

- + European Community's 7th Framework Programme RADHIFFS 2M€
- + Necessary complementary fundings are needed
- Objective : Develop a reconfigurable rad-hard by design FPGA based on Abound Logic architecture
- FP7 Consortium : ATMEL (F), Abound Logic (F), ASTRIUM (G, F et UK), CNES (F), EADS IW (F), Politecnico torino (I), Space Research Center PAS (Poland), Surrey University (UK), TAS (F), Tubitak Uzay (T), University of Padova (I), AICIA Sevilla (Spain)
- Schedule : T0 = not started, duration : 3 years
- Status :
 - Abound Logic FPGA IP has been sold to Meta Systems subsidiary of Mentor. ATMEL is in negotiation with Meta Systems,
 - ATMEL proposes to proceed in 2 steps (TBC) :(1tile = ATF280F capacity)
 - a 1Mg FPGA (4 tiles) : Space rad-hard FPGA manufactured in UMC 90nm technology (TBC)
 - a 2.4Mg FPGA (9 tiles) : Space rad-hard FPGA manufactured in ST 65nm technology (TBC)

2.4Mg FPGA in EPPL in 2015

- DSM Technologies
 - Moore law
 - Reliability
- DSM Program
- Converters
- ASIC technology
- **FPGA**

Conclusion and way forward
CONCLUSION and way forward (1/2)

- The DSM initiative, initially driven by next generation telecommunication satellites, and coordinated within the frame of the CTB, identified critical technologies, namely Broadband ADC and DAC, HSSL, digital ASICs and FPGA for for high integration and processing power applications.
- Strong efforts from ESA, CNES and European Community to support the development and ESCC evaluation of these strategic technologies.
- First ADC, DAC and HSSL prototypes and First 65nm Space Library test-chip are available showing Encouraging results
- Development and ESCC Evaluation on-going
- Highlights :
 - End-users involvement and European harmonisation efforts
 - Close relationship with manufacturers
 - DSM reliability was early taken into account in technology selection and design phases

CONCLUSION and way forward (2/2)

Technical and Business Challenges ahead:

- Establish advance space-quality packaging solutions for DSM ICs
- Secure more institutional funds (EEE critical components) to complete developments and qualification
- Establish sustainable business models for European DSM supply chain.
- Partnerships between manufacturers or key vendors (Foundries, Assembly and Test houses) and institutional support (ESA, Agencies, EC) are a must to succeed and maintain a small volume / expensive technology market, always driven by big volume commercial technology and products.
- Though always low volume, general purpose converters and DSM ICs such as Microprocessors, reprogrammable FPGAs, DSPs should help sustain the business model, in addition to dedicated high-end ASICs for NG Telecom and Scientific payloads.

We should continue our efforts to give access to European DSM technologies to ensure the competitiveness of European equipment manufacturers

Thank you !

Any questions ?

Contact :

florence.malou@cnes.fr laurent.hili@esa.int

Tel.: +33 (0)5 61 27 32 62