Document: ASTRIUM-RAD-916 Issue: 1 Date: 11.01.2001 Page: 1 of 12

Single Event Radiation Test Report

Type : FRC150R

Parts Description : N-Channel Power MOSFET

Intersil

Manufacturer :

Test performed by:Dr. Wolfgang Schäper, Astrium GmbH
Frank Rauh,
Ole Pedersen,Astrium GmbH
Astrium GmbH
Reno Harboe-Sorensen
ESA/ESTECContact:Ole Pedersen, Department TN517
Tel +49 89 607 20763
Fax +49 89 607 23039

email: ole.pedersen@astrium-space.com

Prepared:	Date:	
r repuieu.	Duic.	

Released QA: _____ Date: _____

NOTE: The electronic copy of this document is unsigned, but the original carries above signatures

All rights reserved. The contents are proprietary of astrium GmbH and may not be distributed to any third parties without prior written consent of astrium GmbH.

Document: ASTRIUM-RAD-916 Issue: 1 Date: 11.01.2001 Page: 2 of 12

to Astrium-rad-916

Issue/ Revision	Date	Change	Page
1	11.01.01	New document	All

WORD 97

Document: ASTRIUM-RAD-916 Issue: 1 Date: 11.01.2001 Page: 3 of 12

Table of Contents

1	GENERAL INFORMATION	4
1.1	Scope	4
1.2	Applicable Documents	4
1.3	Definition of Terms	4
2	COMPONENT DETAILS	5
3	TEST SETUP DETAILS	5
4	TEST DETAILS	10
4.1	Test Run Summary	10
4.2	Heavy Ion Beam Details	11
5	SUMMARY	12

1 <u>GENERAL INFORMATION</u>

1.1 <u>Scope</u>

This test report details the results of the heavy ion Single Event Effects (SEE) testing performed on the Intersil FRC150R, 100V, N-channel, enhancement-mode, silicon-gate, Rad-Hard power MOSFET. The MOSFET type has its application in the METOP, PPF/ENVISAT and CLUSTER II SSR Power Converter.

In particular Single Event Burnout (SEB) and Single Event Gate Rupture (SEGR) sensitivities of the MOSFET has been verified under and around original electrical conditions applicable for the METOP SSR Converter.

The testing was performed on the 20.12.00 at the ESA Heavy Ion Test Facility (HIF) at UCL in Louvainla-Neuve, Belgium under support of Mr. Reno Harboe-Sorensen from ESA/ESTEC.

1.2 <u>Applicable Documents</u>

METOP, "Methodology for Radiation Hardness Assurance", Doc. Reference: MO-NT-MMT-PA-001, Issue 02 of 20.10.98.

ESA/SCC Basic Specification No. 25100, "Single Event Effects Test Method and Guidelines".

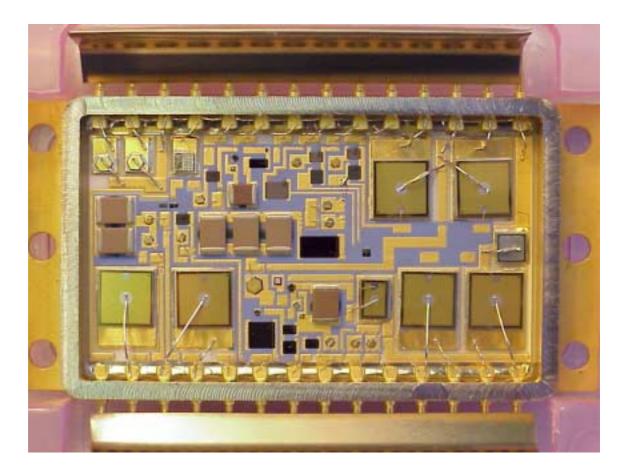
Astrium SAS (Mr. Guidal) fax ref.: MO.FX.MMT.1705/00 of 08.12.00, "FRC150 SEGR Testing at UCL".

1.3 Definition of Terms

SEB:

Breakdown and subsequent burnout of the parasitic bipolar transistor inherent in the power MOSFET structure (resulting from a heavy ion hit of the parasitic transistor).

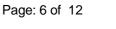
SEGR:


Direct breakdown and subsequent rupture of the gate dielectric of the power MOSFET along the track of a heavy ion hit.

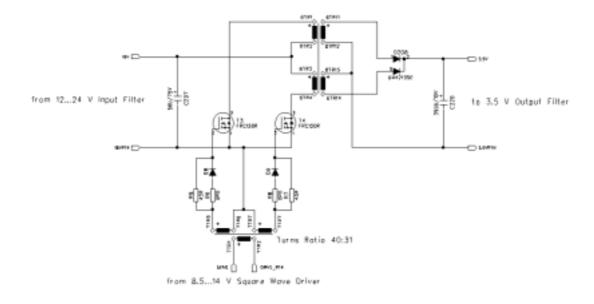
Page: 5 of 12

2 <u>COMPONENT DETAILS</u>

The two FC150R MOSFET test candidates are located inside a signal hybrid on the SSR power converter board. The MOSFETs, named T3 and T4, are the two large chips located next to each other in the upper right corner as shown below.



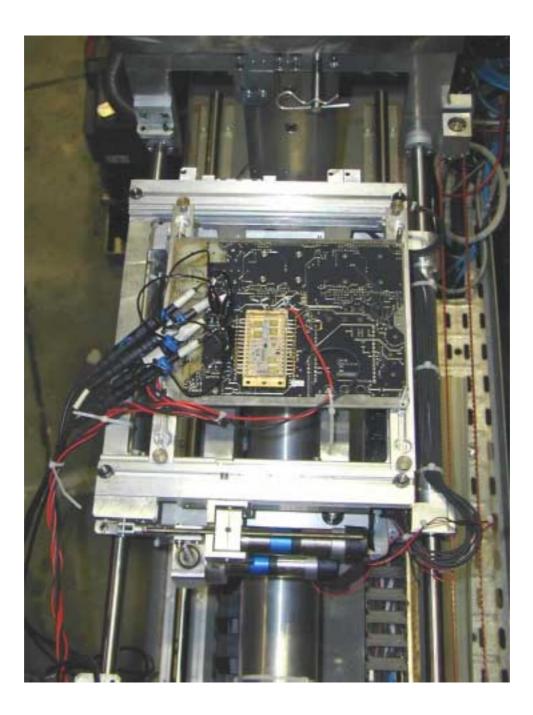
3 <u>TEST SETUP DETAILS</u>


A special SSR converter board with the hybrid was prepared for the SEE testing. The board was configured to provide the worst case METOP application conditions for the MOSFETs, i.e. VGS = -9V and VDS = 41V together with a converter output power of 12.25W at EOL under a switching frequency condition of 40 KHz. For experimental and test verification reasons the board was constructed such as to provide the possibility to exceed METOP worst case conditions and eventually during SEE testing the MOSFET operation was verified under VGS = -11V and VDS = 50V at a LET of 38.0 MeV/(mg/cm²).

The basic bias condition during test for both MOSFETs is illustrated below:

Document: ASTRIUM-RAD-916 Issue: 1 Date: 11.01.2001

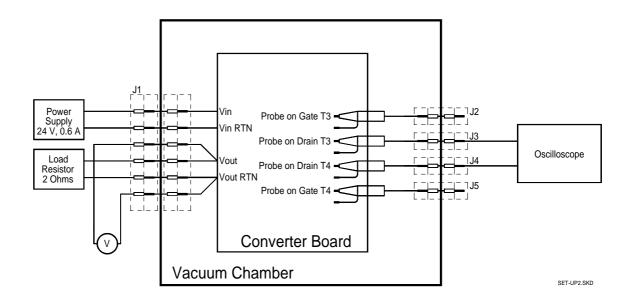
An overall overview of the test set-up is shown below. The converter board is located in lower right corner of the picture and the hybrid with the test MOSFETs on the converter board is the large rectangular shaped block on the board:



The following photograph shows the position of the board within the test chamber of the HIF facility. The probes and cables for external connection can clearly be identified on the photograph:

Document:ASTRIUM-RAD-916Issue:1Date:11.01.2001

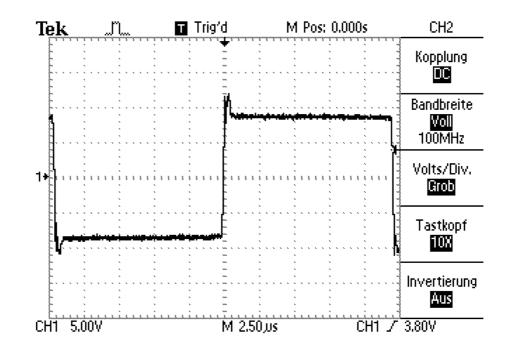
Page: 7 of 12


Page: 8 of 12

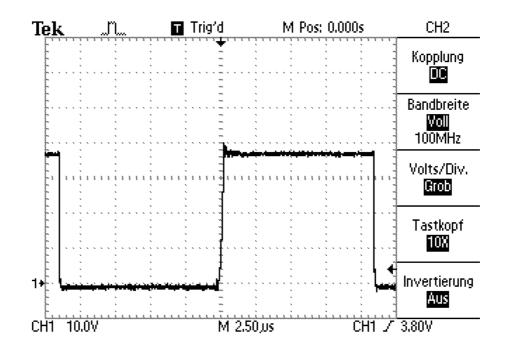
During irradiation both drains of the MOSFETs were constantly monitored to observe any changes in the switching VDS, thereby observing whether or not a SEGR or SEB occurred. In case either a SEGR or SEB occurred the VDS would become constant and hence no switching curve on the oscilloscope would be visible. The current limitation of the power supply was adjusted to about 500 mA to prevent thermal and/or physical damages of the MOSFETs in case of a SEE.

Oscilloscope probes were also connected to both gates of MOSFETs in order to be able to verify proper gate operation during testing.

The following schematic shows the power supply, load and monitor connections to the MOSFETs during SEE testing:



As shown below in the Test Run Summary table the VGS amplitude was varied between \pm 7V and \pm 11V and the VDS amplitude between 25V and 50V for the different test runs. The following two oscilloscope images presented below show typical VGS amplitude of \pm 9V and VDS amplitude of 41V. These bias conditions were used in test runs 2, 8 and 10 representing METOP flight conditions.


Page: 9 of 12

 $VGS = \pm 9V$

VDS = 41V

4 <u>TEST DETAILS</u>

4.1 <u>Test Run Summary</u>

The test was performed at the ESA Heavy Ion Test Facility (HIF) at UCL in Louvain-La-Neuve in Belgium. The aim of the test was to verify device SEB and SEGR performance up to a LET of $38.0 \text{ MeV/(mg/cm^2)}$ using VGS = -9V and VDS = 41V.

A total of 15 test runs were performed in successive order as shown in the table below. The first three test runs were carried out using safe operation conditions and low LET of 14.1 MeV/(mg/cm²) in which different VGS and VDS voltage condition were applied. Using a LET of 34.0 MeV/(mg/cm²) similar voltage variations were applied. The final test runs used a LET of 38.0 MeV/(mg/cm²) which corresponded to METOP test level requirements.

It should be mentioned that the test voltage conditions used in test runs 2, 8 and 10 correspond to METOP flight conditions and the test voltages in final two test runs exceed the METOP flight conditions.

TEST RUN SUMMARY						
TEST RUN	VGS (V)	VDS (V)	ION	LETeff [MeV/mg/cm²]	FLUENCE [cm²]	
01	-7,0	41,0	AR	14,1	1000000	
02	-9,0	41,0	AR	14,1	1000000	
03	-9,0	50,0	AR	14,1	1000000	
04	-7,0	25,0	KR	34,0	1000000	
05	-7,0	41,0	KR	34,0	1000000	
06	-7,0	50,0	KR	34,0	1000000	
07	-9,0	25,0	KR	34,0	1000000	
08	-9,0	41,0	KR	34,0	1000000	
09	-9,0	50,0	KR	34,0	1000000	
10	-9,0	41,0	KR	38,0	1000000	
11	-11,0	25,0	KR	34,0	1000000	
12	-11,0	41,0	KR	34,0	1000000	
13	-11,0	50,0	KR	34,0	1000000	
14	-11,0	41,0	KR	38,0	1000000	
15	-11,0	50,0	KR	38,0	1000000	

The following ions were used:

 40 Ar⁸⁺ 0° tilt implying a LET of 14.1 MeV/(mg/cm²) 84 Kr¹⁷⁺ 0° tilt implying a LET of 34.0 MeV/(mg/cm²) 84 Kr¹⁷⁺ 27° tilt implying a LET of 38.0 MeV/(mg/cm²)

Document:ASTRIUM-RAD-916Issue:1Date:11.01.2001

Page: 11 of 12

No SEB nor SEGR failures were observed in any of the 15 test runs.

4.2 <u>Heavy Ion Beam Details</u>

The table below summarises all details related to the heavy ion beam being used during this SEE test and the test run numbers correspond to the test run numbers presented in the previous table.

	HEAVY ION BEAM DETAILS									
TEST RUN	ION	ENERG Y [MeV]	TILT [°]	LET [MeV/mg/cm²]	LETeff [MeV/mg/cm²]	RANGE [µm(Si)]	Test Time (sec)	FLUENCE [cm²]	FLUX (p/cm²/s)	DOSE (rad)
01	AR	150	0	14,1	14,1	42,0	145	1000000	6897	226
02	AR	150	0	14,1	14,1	42,0	147	1000000	6803	226
03	AR	150	0	14,1	14,1	42,0	120	1000000	8333	226
04	KR	316	0	34,0	34,0	43,0	190	1000000	5263	545
05	KR	316	0	34,0	34,0	43,0	252	1000000	3968	547
06	KR	316	0	34,0	34,0	43,0	163	1000000	6135	547
07	KR	316	0	34,0	34,0	43,0	119	1000000	8403	547
08	KR	316	0	34,0	34,0	43,0	106	1000000	9434	544
09	KR	316	0	34,0	34,0	43,0	112	1000000	8929	548
10	KR	316	27	34,0	38,0	38,3	110	1000000	9091	610
11	KR	316	0	34,0	34,0	43,0	141	1000000	7092	548
12	KR	316	0	34,0	34,0	43,0	100	1000000	10000	545
13	KR	316	0	34,0	34,0	43,0	93	1000000	10753	546
14	KR	316	27	34,0	38,0	38,3	90	1000000	11111	611
15	KR	316	27	34,0	38,0	38,3	93	1000000	10753	613

Page: 12 of 12

5 <u>SUMMARY</u>

Two different Intersil FRC150R power MOSFETs, operated under original electrical conditions applicable for METOP, PPF/ENVISAT and CLUSTER II SSR Power Converter, have been submitted to SEB and SEGR testing using the ESA HIF at UCL, Louvain-la-Neuve, Belgium.

No SEB nor SEGR failures were observed in any of the test runs.

SEB and SEGR worst case verification test conditions were:

VGS = -11V and VDS = 50V at a LET of 38.0 MeV/(mg/cm²)

For comparison the METOP SEB and SEGR minimum test requirements were:

VGS = -9V and VDS = 41V at a LET of 38.0 MeV/(mg/cm²)

It has been demonstrated that this part type in its application fulfils the SEB and SEGR radiation requirements specified for METOP in "Methodology for Radiation Hardness Assurance", Doc. Reference: MO-NT-MMT-PA-001, Issue 02 of 20.10.98.