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Introduction: What are MEMS switches?

d MEMS switches = enable reconfigurable RF systems

Capacitive switch Ohmic switch

© RF MEMS switches

= very good RF performance

= good integration capabilities
= wide range of applications

= potentially low cost

Switch Off » strong industry interest
T r——
o ® Reliability problems
S . .
Switch On Switch On " stress control during processing
Sl — » packaging/capping process
IT 11 = environment (T, RH, radiation)
Vg ° Vg = dc contact degradation

_ _ » charging effect
Images: IEEE Microwave Magazine, Koen Van . }
Caekenberghe, January/February 2012 » mechanical degradation



- Introduction: Reliability problems

MEMS in the DOWN-state Dielectric charging

» uniform / non-uniform charging
extrinsic charge (current)
intrinsic charge (polarization)
air-gap breakdown

substrate charging (?)

charging due to radiation

Movable electrode

YV V V VY

V>V

Mechanical degradation
» creep

Substrate Reftomclecticoe > fatigue

> Vviscoelastic effect

 During normal operation conditions many mechanisms can occur simultaneously.
(d Device failure due to various mechanisms can be similar (difficult to isolate the real cause)
(d No standard test methods and structures to isolate different mechanisms.

Motivation: Develop test methods and test structures to isolate and accelerate
individual mechanisms and correlate results to real device reliability.




Capacitance, F

Y

Ideal C-V curve

P4
<

t } >

“Veo 0+ Ve

Voltage, V

» charging and mechanical degradation

can cause similar change in thresholds
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] Results: Isolation of degradation mechanisms
= Accelerated stress tests, test structures, and results



AG %0 DC stress AV Ac =0 BIP stress

\V} |_ tip

tdc >
> J J stress time
stress time V4 U

switch remains in
T down-state during
DC and BIP stress

0 DC stress = charging accelerated = mech. degradation accelerated

0 BIP stress = charging is limited — mech. degradation accelerated



Isolation of degradation mechanisms: test structures

Test Structures:

0 RF MEMS capacitive switches
O Switch A: 0.5 um thick titanium
O Switch B: 1.0 um thick aluminium

spring membrane spring

Substrate (i.e. silicon wafer with initial oxide)

Al (1.0 um) or Ti (0.5 um)
CVD oxide (100 nm)

Al (0.5 um, CPW line)

CPW line

air-gap

membrane
and springs



Q dry-air environment

0 room temperature

Initial pull-in tests: V-, V*p,

= DC stress: 10 min @ -25V . +
= Pull-in tests > AV'p, AV,

relaxation at no bias

-

= BIP stress: 10 min @ 25V, 50% duty cycle, 1 kHz -
: oAy ---> AV, AVY,
= Pull-in tests

relaxation at no bias

-

= BIP stress: 10 min @ £25V, 50% duty cycle, 10 kHz . +
= Pull-in tests > AV, AV
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Isolation of degradation mechanisms: results — titanium switches
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Isolation of degradation mechanisms: results — titanium switches
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Isolation of degradation mechanisms: results — titanium switches

2.0

initial pull-in voltages DC St ress
1 = = —after 10min @ DC (-25V)
1.5_
S in pull-in voltages
w- ’ ’l .
1.0 | : -
: :
1 I
0.5- T—> |
‘ ——r>
m- - Il
0.0 -
AVP| AV;I
-15 -10 -5 0 5 10 15
voltage [V]
2.0

initial pull-in voltages

|= = —after 10min @ BIP, (£ 25V, 1 kHz)
----- after 10min @ BIP, (+ 25 V, 10 kHz)

NO shift effect
in pull-in voltages

BIP stress

voltage [V]

15




capacitance [pF]

capacitance [pF]

2.0

Isolation of degradation
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solation of degradation mechanisms: results —aluminium switches
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Isolation of degradation mechanisms: titanium vs. aluminium
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Conclusions

Simple theory and test method for isolation of charging from
mechanical degradation in capacitive switches

Experiments on MEMS capacitive switches support the theory and
test method

Experiments show that dominant reliability issue may be technology
dependent (e.g. materials, process, and device layout)

This work can contribute to establish standardized reliability tests

Other activities in the project:
» investigation of the radiation influence on MEMS switches
» isolation of “substrate charging” effect (i.e. method, test structure)

» understanding of physics of charging and mechanical issues
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