

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

Thibaut Fourcade¹⁻², Adrien Broue¹, Jean-Michel Desmarres³, <u>Jérémie Dhennin¹</u>, Cédric Seguineau¹, Olivier Dalverny²

> ¹ NOVAMEMS, France ² Université de Toulouse, INPT, LGP-ENIT, France ³ CNES, DCT/AQ/LE, France

© NOVA MEMS 2011 - Reproduction is not allowed without authorization

Outline

• Scope of the study

SERVICES FOR RELIABILITY

- Description of the microtensile apparatus and tensile specimens
- Theory on the damage of material
- Description of the mechanical and electrical methods for measuring damage of material
- Results

Scope of the study

- The mechanical functions of MEMS (sensors or actuators) are often insured by moveable thin films (thickness of a few micrometres)
 - Dimensioning micro-systems requires relevant data on the mechanical behaviour (elastic parameters and yield stress)
 - The reliability assessment requires more data on the fatigue and damaging laws
 - Some applications require large deformations (flex-IC) with plastic behaviour and substantial damaging
- Two methods are developed here for the characterization of damage of freestanding thin films:
 - Mechanical characterization
 - Electrical characterization

NOVOMENS SERVICES FOR RELIABILITY

The microtensile apparatus

- Characterization of the stress-strain relationship of thin coatings
- Strain measurements is a key issue --> overcome by the use of interferometry technique

05/11/2012

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

The microtensile apparatus

- The specimen is fastened into grips to prevent any awkward slipping
- After cutting the frame, the grips are moved away from each other
- The load and displacement are monitored (converted in a stress-strain curves)
- Post-test analysis : fractography and geometrical parameters

Elastic-Plastic uniaxial behaviour: Young's modulus (*E*), yield stress (*Y*), strain-hardening, ultimate elongation and strength (ε_u , σ_u).

05/11/2012

Theory of damage and mechanical characterization :

- The damage variable *D* has been introduced by Lemaitre¹ in order to characterize the damage of material.
- $D \rightarrow 0$ for a virgin material and D = 1 for a broken material
- According to Lemaitre, the Young's modulus *E* of a damaged material depends on the initial Young's modulus and *D*:

$$\tilde{E} = E(1-D)$$

 A multicycle experiment with several loading and unloading is efficient for characterizing the evolution of D through the evolution of Ẽ

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

 $\ensuremath{\textcircled{\sc SnovA}}$ NOVA MEMS 2012 - Reproduction is not allowed without authorization

The electrical measurement of damage

• Theory:

RVICES FOR RELIABILITY

The electrical resistance R depends on the resistivity ρ , section S and length L of the specimen:

$$R = \rho \frac{L}{S}$$

 \checkmark Damage variable *D* is linked to the damage section \tilde{S} :

$$\tilde{S} = S(1-D)$$

- \checkmark The evolution of *D* is then linked to the evolution of the electrical resistance *R*.
- ✓ BUT: the evolution of section is not only due to the evolution | of D → variations due to the volume conservation in plastic deformation

Electrical measurement

- A four-wires probe method have been used in order to avoid contact resistance measurement.
- FEM simulation performed in order to ensure that the electrical measurement does not induce too high temperature

05/11/2012

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

© NOVA MEMS 2012 - Reproduction is not allowed without authorization

+

SERVICES FOR RELIABILITY

Results for mechanical damage:

- Multicycle experiment performed on Aluminium freestanding thin films.
- Observations:
 - \checkmark While $\varepsilon < 0.1$, even if the stress falls, there is no damage in the material
 - From $\varepsilon = 0.1$ until failure, D increases fast.

Looking only at the stress-strain curve lead to the conclusion that damage occurs from $\varepsilon = 0.0125$

05/11/2012

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

 $\ensuremath{\mathbb{C}}$ NOVA MEMS 2012 - Reproduction is not allowed without authorization

SERVICES FOR RELIABILITY

Mechanical vs electrical measurements of damage

- The damage variable D can be written as a function of the measured electrical resistance R_{meas} .
- The evolution of *R* is linked to the evolution of section and length.
- R_{meas} must then be corrected in order to be only proportional to D.

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

NOVOMENS SERVICES FOR RELIABILITY

Mechanical vs electrical measurements of damage

- Until $\varepsilon = 0.1$, from mechanical experiment $D = 0 \rightarrow$ the evolution of R_{meas} is only due to geometrical effect which is linear.
- Subtracting this effect to R_{meas}, the evolutions of R_{corr} and D_{meca} are perfectly superposed.

05/11/2012

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

Influence of mechanical behaviour on the evolution of electrical resistance

SERVICES FOR RELIABILITY

Ductile gold specimen

05/11/2012

Mechanical damage monitoring on aluminum freestanding thin films used for MEMS applications

 \odot NOVA MEMS 2012 - Reproduction is not allowed without authorization

ACCORDENSERVICES FOR RELIABILITY

Conclusion

- Stress-strain curves are needed to properly design MEMS devices.
 Specific apparatus and methods must be employed (microtensile test)
- But Fatigue and damages should also be investigated to properly estimate the reliability and lifetime of devices :
 - The performances of a RF-switch are primarly linked to the stiffness of the moveable electrode, ie. to its apparent Young's modulus, ie. to the cumul of damage through multiple cycling.
- Two methods have then been developed to characterize damage of freestanding thin films during a uniaxial tensile test :
 - The multicycle experiment is a method which gives accurate results but asks for particular loading and unloading.
 - The measurement of the electrical resistance is a new method that gives continue information on the damage level along with an monotonic uniaxial tensile test.
 - ightarrow on-board monitoring of the damage level could be implemented at device level.