

MEMS Switches: status on reliability issues and characterization techniques

Jérémie DHENNIN, F. Coccetti, A. Broué, Nova MEMS F. Courtade, CNES ESA round table on MNT 15-18th October 2012

Outline

- Typical failure mechanisms for MEMS switches
- Dielectric charging processes

SERVICES FOR RELIABILITY

- ✓ Modelling
- Characterization through KPFM
- Micro contact degradation
 - Modelling
 - Characteriztaion through micro-bending tests
- Packaging

NOVOMENS SERVICES FOR RELIABILITY

Sandia failure mechanisms

Product	Class	Mechanical Wear	Fracture	Fatigue	Optical Degradation (Use)	Charging	Shock	Vibration	Dielectric Breakdown	Change in Friction	Radiation	Thermal Degradation	Thermal Cycling	Humidity	Shock	Vibration	Stress-corrosion cracking	Creep	Environmental Degradation	Optical Degradation	Stiction
DNA Sequencers	1																		X		
Microfluidics (electrostatic)	1		100	120					X		-								X		
Nozzles	1																		X		
Chemical Sensor	1										X				1				X		
Accelerometer	I or II	X	X	X		X	m	m		X	х			X	X	X	13.5	X	in the second	1	х
Pressure Sensor			X	X			X	X				X	X		1			X	X	13	
Gyro	11	S N		1		X	X	X		1	X			X	X	X		Constanting of	a state in the		2
Microfluidic Pumps (Flex)		12.2	X	X			X	X							X	X	X	X	X		х
Waveguide Switch			X	X	- 11-		X	X		Sec. 1				X	X	х	X	X	X		х
Thermal Actuator	111	X					X	X			1	X	X		X	X	1119				х
Valves		X	X	X		2511	X	X				X	X		X	X	X		X		X
Microrelays	III	X	X	X		X	X	X	X	X				X	X	X	X	X			X
Electrostatic Actuator	IV	Х	X	X			X	X		X			+	X	х	X	x	X			X
Optical Shutter	IV	X	X	X			×	X				х	x	x	X	X					х
Mirror Device	IV	X	X	X	X		X	X		1		х	X	Х	X	х		1.000	Second -	х	
Microfluidic Pumps (Rubbing)	IV	X	X	X			X	x		X					X	X	Х		X		х
Geared Devices	IV	X	X	X			X	X		X		х	X	X	X	X	X	X	X		
Microturbine/Fan	IV	X					X	X		X		X	X		X	X	X	X	X		

15/10/2012

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Failure of micro switches

novamems

SERVICES FOR RELIABILITY

Polynoe program, EDA funding; 2008-2011

Charging effect modelling

Three assumptions must be considered: Dielectric

(1) First assumption: Slow polarization effect.

(2) Second assumption: Electrical current passing from site to site.

(3) Third assumption: Direct exchange due to the tunnel effect.

The possible mechanisms of charging effects

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Charging effect modelling

In an equivalent electrical model, the slow polarization phenomena in this dielectric material can be presented by two capacitance Co and Cv, placed in parallel where:

$$C_0 = \frac{\varepsilon_r * A}{t} \qquad \qquad C_v(t) = \varepsilon(t) * \frac{A}{t}$$

t : Thickness.

15/10/2012

A : Area.

 \mathcal{E}_{x} : Dielectric constant.

SERVICES FOR RELIABILITY

 $\mathcal{E}(t)$: time evolution of the dielectric constant.

$$V_{Shift} = V_2 - V_1 = \frac{-C_a C_v}{\left(C_0 + C_v\right)\left(C_0 + C_a\right)} V_{\substack{actuation \\ (pull-in) \\ (pull-out)}}$$

Case with charging Effect

Ideal case

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Capacitance and drift voltage variation

Reliability model implemented in VHDL-AMS

8th ESA round table on MNT - jeremie.dhennin@novamems.com

© NOVA MEMS 2012 - Reproduction is not allowed without authorization

8

15/10/2012

VHDL-AMS results: drift voltage for different applied voltage amplitudes

M. Matmat et al ESREF 2010

As the amplitude increases, the drift voltage increases

15/10/2012

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Experimental reliability tests: Kelvin Probe Force Microscopy techniques

Methodology: Using KPFM to simulate charge injection through asperities

SERVICES FOR RELIABILITY

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Experimental reliability tests: Kelvin Probe Force Microscopy techniques

Charge injection in tapping mode Up = 20 V30 V 40 V 50 V 60 V 70 V . 12 V SiN_x Au 0 VSilicon substrate 30 µm 0 µm 12V AFM base chuck 4.0 650 (a) U_p= 40 V -600 [wu] WHMJ Induced surface potential 3.5 ∑ ⊃^{°° 3.0-} U_{DCR} Us 500 2.5-FWHM 450 1000 10000 100 (b) (c) t [s] © NOVA MEMS 2012 - Reproduction is not allowed without authorization

SERVICES FOR RELIABILITY

Experimental reliability tests: Kelvin Probe Force Microscopy techniques

SERVICES FOR RELIABILITY

Influence of relative humidity on dielectric charging

Results from the KPFM investigations

Influence of environment gases and relative humidity

+ Faster charging/discharging

High Humidity \rightarrow

ERVICES FOR RELIABILITY

- + Lower surface potential
- Wider surface potential
- Higher background potential

Nanotechnology 22 (2011) 035705 U Zaghloul et al

8th ESA round table on MNT - jeremie.dhennin@novamems.com

SERVICES FOR RELIABILITY

Micro contact failure

- OMRON Switch:
 - Contact sticking during "hot switching" was the major design issue that needed to be resolved. Contact geometry and a proprietary metallurgical alloy were the keys to success. »

Micro-contact reliability Failure mechanisms

SERVICES FOR RELIABILITY

- Commonly reported failure mechanisms are:
- Mechanical (cold welding, strain hardening, wear, fretting...)
- Electro-thermal (hot welding, annealing, arcing, creep, softening...)
- Chemical (contaminations, frictional polymers, corrosion, oxidation or sulfidation: formation of insulating films at the extreme surface)

FAME program, ANR funding, 2008-2011

 All inducing modifications of the topological, mechanical and/or electrical properties of the contact

15/10/2012

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Micro-contact physics

The <u>effective contact</u> area is largely **smaller** than the apparent one \rightarrow due to the **small force** available in micro actuators (50 – 250 µN)

 The contact resistance *Rc* is linked to the <u>constriction</u> of <u>current lines</u> between both contacts → local increase of the current density + <u>ballistic transport of</u> <u>electrons</u>

/!\ breakdown of classical theory $R_{Contact} = \Gamma(K)R_{Holm} + R_{Sharvin}(+R_{Film}?)$ where $R_{Holm} = \frac{\rho}{2a}$ and $R_{Sharvin} = \frac{4\rho K}{3\pi a}$ 15/10/2012 Diffusive Ballistic 8th ESA round table on MNT - jeremie.dhennin@novamems.com

Relationship between contact resistance *Rc* and the load applied *Fc* on the contact

$$R_C = A F_C^{-x}$$

The highest contact spot temperature T_c expressed as a function of the contact voltage V_c

$$T_{c} = \sqrt{\frac{V_{c}^{2}}{4L} + T_{0}}$$

Micro-contact physics Contact temperature focus

ICES FOR RELIABILITY

- » Plastic deformation proceeds more rapidly when the <u>softening temperature</u> of the contact material is reached → <u>Softening of the contact metal</u> reduces the strain hardening of the asperities
- → The effective contact area increases inducing a drop of the contact resistance
- It could accelerate aging of the contact by the activation of thermal failure mechanisms (material transfers, modification of the contact surfaces, adhesion ...)
 - Temperature also controls mechanisms such as oxidation, corrosion, or creep

Contact temperature is a first order parameter

*The contact is heated by Joule effect

15/10/2012

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Description of the experimental set-up

• Specific contact investigation:

SERVICES FOR RELIABILITY

Source Modes

Switching Modes

Test vehicle description

 LETI specimens (same method for measuring contact resistance as the one used in crossed rod design of Holm)

*stored in dry N2 to slow down any environmental contamination of the contact surfaces, but gradual contamination accumulation still occurred

15/10/2012

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Results: R_c VS F_c

Contact resistance versus contact force as a function of the current flowing through the contact for Au/Ru, Au/Au, Ru/Ru, Rh/Rh and Au/Ni contacts at 1mA and 100mA (V_{compliance} = 1V)

- » Au/Au contact shows the more stable and the lowest contact resistance beyond contact force about 40μ N from 1mA (R_c = 0.49 Ω) to 100mA (R_c = 0.45 Ω)
- » Rh/Rh contact reaches a lower contact resistance at 140µN compared to the Ru/Ru contact at 1mA. This result could be attributed to the low resistivity of the rhodium compared to the ruthenium.
- **Au/Ru bimetallic contact** is relatively stable at the maximum contact load. From 1mA to 100mA, the contact resistance at 145 μ N decreases from 1.9 Ω to 1.4 Ω .

15/10/2012

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Results: Contact heating focus

SERVICES FOR RELIABILITY

> Monometallic contacts

- Tc increases until reaching the softening temperature
- From the softening temperature, the <u>Tc</u> stops to increase and it seems to <u>oscillate around the softening temperature</u>.
- Softening temperature for Rhodium is ~360°C (unknown in literature)

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Results: Contact heating focus

SERVICES FOR RELIABILITY

> Bimetallic contacts

- Tc increases without reaching a maximum **》** for Au/Ru contact
- The leveling of the potentials across the Au/Ni contact is observed, but for contact temperatures largely higher than the nickel or the gold softening temperature
- The behavior is different in comparison with monometallic contacts

remie.dhennin@novamems.com

Wafer level packaging

SERVICES FOR RELIABILITY

OVC

• MEMSPACK FP7 project (IMEC lead) 2009-2011

II. Chip cap; polymer; horizontal

III. Chip cap; metal; buried

IV. Thin film cap; dielectric; buried

V. Thin film cap; polymer; planar

VI. 1-level; LTCC/metal; vertical&horizontal

8th ESA round table on MNT - jeremie.dhennin@novamems.com

Packaging assessment

RVICES FOR RELIABILITY

