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Outline

e Typical failure mechanisms for MEMS switches

e Dielectric charging processes
Modelling
Characterization through KPFM

* Micro contact degradation

Modelling
Characteriztaion through micro-bending tests
e Packaging
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Sandia failure mechanisms
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N

Failure of micro switches
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N

Reliability Modeling of dielectric charging

High electric field across the dielectric

¥

Built-in charges inside the dielectric

¥

Shift in pull-in and pull-out voltages
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Polynoe program, EDA funding; 2008-2011

Charging effect modelling

Three assumptions must be considered: Dielectric

(1) First assumption: Slow polarization effect.
(2) Second assumption: Electrical current passing from site to site.

(3) Third assumption: Direct exchange due to the tunnel effect.

The possible mechanisms of charging effects
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Charging effect modelling

In an equivalent electrical model, the slow polarization phenomena in this dielectric material can be
presented by two capacitance Co and Cv, placed in parallel where:

* A
c, =& A C,(1) = £(t)*=
t
t
t : Thickness.
A : Area. —CC
&, : Dielectric constant. VShift :V2 —V1 = a_ Vv ctuation
g(t) : time evolution of the dielectric constant. (Co + CV ) (Co + Ca) (pull—in)
(pull—out)
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Capacitance and drift voltage variation

8p
© e 1 —— Bias
g 1a voltage
30 / \ ] " Es :a*vf
\
T \ — cW=-ery | -0
Sl \ f
10 / \ 2p
| IR —C,C,
/ Ve (G, +C,)(C,+C )V?‘;L“.?‘_‘?n”)
0 20 40 60 80 100 0 Y 0 a (pull—out)
Time (s)
Reliability model implemented in VHDL-AMS
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VHDL-AMS results: drift voltage for
different applied voltage amplitudes
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M. Matmat et al ESREF 2010

As the amplitude increases, the drift voltage increases
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Experimental reliability tests:
Kelvin Probe Force Microscopy techniques

Charge injection

through asperities » Understand charging/discharging

processes on the nanoscale
(single asperity level)

®

-

W

* Low-cost technique (bare
dielectric films)

HQ)]

Charge 1njection Surface potential scanning

Methodology: Using KPFM to simulate charge injection
through asperities
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I Experimental reliability tests:

Kelvin Probe Force Microscopy techniques
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Microscope picture
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During KPFM scanning

Experimental reliability tests:

Kelvin Probe Force Microscop
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techniques

U. Zaghloul et al., J. Microelec.
Reliab., 2010

U. Zaghloul et al., J. Vacuum

Science and Technology (in
press), 2011
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Influence of relative humidity on dielectric charging

Results from the KPFM investigations
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Influence of environment gases and relative humidity

+ Faster charging/discharging

+ Lower surface potential

- Wider surface potential

- Higher background potential
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Nanotechnology 22 (2011) 035705 U Zaghloul et al
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Micro contact failure

e OMRON Switch:

« Contact sticking during “hot switching” was the major design issue that
needed to be resolved. Contact geometry and a proprietary metallurgical alloy
were the keys to success. »
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. C ey FAME program, ANR funding, 2008-2011
Micro-contact reliability

Failure mechanisms

e Commonly reported failure
mechanisms are:

* Mechanical (cold welding, strain
hardening, wear, fretting...)

e Electro-thermal (hot welding,
annealing, arcing, creep, softening...)

e Chemical (contaminations, frictional
polymers, corrosion, oxidation or
sulfidation: formation of insulating
films at the extreme surface)

= All inducing modifications of the topological, mechanical
and/or electrical properties of the contact
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Micro-contact physics

The effective contact
area is largely smaller
than the apparent one
=>» due to the small
force available in
micro actuators (50 —
250 uN)

2

5 8
- X X

Electrical contact area

Relationship between
contact resistance Ac and

1 om Gt + 1830KX  SgralA = 5€2 pp—— the load applied Fcon
p— BT = 2004 WD= 34mm
the contact
e The contact resistance Rc is linked to the constriction R. = AF.*

of current lines between both contacts =» local
increase of the current density + ballistic transport of

The highest contact spot

electrons temperature 7, expressed
as a function of the
/'\ breakdown of classical theory contact voltage V.
_ 40K
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Micro-contact physics
Contact temperature focus

» Plastic deformation proceeds more rapidly when the softening temperature
of the contact material is reached = Softening of the contact metal reduces
the strain hardening of the asperities

= The effective contact area increases inducing a drop of the contact resistance

=» It could accelerate aging of the contact by the activation of thermal failure
mechanisms (material transfers, modification of the contact surfaces, adhesion ...)

» Temperature also controls mechanisms
such as oxidation, corrosion, or creep

Contact temperature is a first
order parameter

*The contact is heated by Joule effect
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Description of the experimental set-up

e Specific contact investigation:

PC
controller

15/10/2012

Environnemental control

Force sensor
—b§

A

Displacement
sensor
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_________________
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Source Modes

Switching Modes

eCurrent source or voltage
source

Hot switching
Cold switching
Mechanical switching

Input Parameters Range
eCurrent level (Ic) 105to 1A
eMaximum load applied (L,,,,) 1uN to 6mN
eContact voltage(Uc) 10 to 40V

eHolding plateau at load max
thold

0 to several min

Environment

Dry nitrogen (< 5% RH)

Outp

uts

sVoltage Drop (V) or current
drop (Ic) [depending on the
source mode]

eContact stiffness (K)

eContact resistance (Rc)

*test

Circui
J\.-I\_IIII\.—-UII\.-IIIIIII\‘:’lluvull]ems-com

*Contact force resolution = 1uN
displacement resolution = 1nm

structures are reported and
micro bonded on a PCB (Printed

t Board).
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Test vehicle description

e LETI specimens (same method for measuring contact
resistance as the one used in crossed rod design of

Holm) Spherical tip of the

Bridge (mobile l/ nanoindenter

contact
) \ Bump (fixed contact @ = 3um)

P

Side view
Contact line
V- é i I+
Top view Location of the

nanoindenter tip
V+ I-

Bridge

*stored in dry N2 to slow down any environmental contamination of the contact surfaces,
but gradual contamination accumulation still occurred
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Results: R VS F.
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Contact resistance versus contact force as a function of the current flowing through the contact for
Au/Ru, Au/Au, Ru/Ru, Rh/Rh and Au/Ni contacts at 1mA and 100mA (Vompjiance = 1V)

»

»

»

Au/Au contact shows the more stable and the lowest contact resistance beyond
contact force about 40uN from 1mA (R. = 0.49Q) to 100mA (R, = 0.45Q)

Rh/Rh contact reaches a lower contact resistance at 140uN compared to the Ru/Ru
contact at 1mA. This result could be attributed to the low resistivity of the rhodium
compared to the ruthenium.

Au/Ru bimetallic contact is relatively stable at the maximum contact load. From 1mA
to 100mA, the contact resistance at 145uN decreases from 1.9Q) to 1.4Q.
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Results: Contact heating focus
>Monometallic contacts

Tc increases until reaching the softening temperature

From the softening temperature, the Tc stops to increase and it seems to
oscillate around the softening temperature.

Softening temperature for Rhodium is ~360°C (unknown in literature)
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lts: Contact heating focus

> Bimetallic contacts

450

» Tc increases without reaching a maximum

-'l..................A............................

Softening

of Gold

A

Contact temperature (°C)

A

for Au/Ru contact

The leveling of the potentials across the
Au/Ni contact is observed, but for
contact temperatures largely higher than
the nickel or the gold softening
temperature

The behavior is different in comparison
with monometallic contacts

»

»
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Wafer level packaging

e MEMSPACK FP7 project (IMEC lead) 2009-2011

I. Chip cap; metal; TSVs IV. Thin film cap; dielectric; buried

MEMS substrate

> MEMS
m i
[

CAP (100um)
— - —

I1. Chip cap; polymer; horizontal V. Thin film cap; polymer; planar

Overcoat nitride (optional)

HRSi
BCB thin film CAP +
MEMS L) MEMS 35
:_ s A W—/_ \ g
Ny

100 =200 pm Planar feedthrough
. planar
HES e il HRSi substrate
III. Chip cap; metal; buried VI. 1-level; LTCC/metal; vertical&horizontal
CAP (Si, Glass, ..) i
1L /_ Recessed cavity {eptioral) Ll /;\ ==
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Packaging assessment

 Advanced
hermeticity

determination

100 s

W
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1
|
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—L He Absorption (MIL-STD 883)

» He pressurization
* Dwell time

» Mass spectroscopy of the gases
escaping the cavity

(

u N,O Absorption (FT-IR)

— Dwell time=10min

T
Secondary
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|
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Principal
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2700
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700

—\ Membrane deflection

e Transmission measurement
(reference)

* N, O pressurization
* Dwell time

» Transmission measurement(sample)

|

* Initial deflection measurement
* He Pressurization
e Final deflection measurement

8th ESA round table on MNT - jeremie.dhennin@novamems.com
© NOVA MEMS 2012 - Reproduction is not allowed without authorization
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