Highly reliable and low voltage actuated Ohmic RF MEMS switch with waver level packaging

<u>aSteffen Kurth</u>, ^bMarkus Nowack, ^bSven Voigt, ^bAndres Bertz, ^aJörg Frömel, ^bChristian Kaufmann, ^aThomas Gessner, ^cAkira Akiba, ^cKoichi Ikeda

^a Fraunhofer ENAS, Chemnitz
^b Chemnitz Univ. of Techn., Center for Microtechnologies, Chemnitz
^c Sony Corporation, Core Device Development Group, Atsugi-shi Kanagawa, Japan

Page 1 Fraunhofer ENAS

TECHNISCHE UNIVERSITÄT CHEMNITZ

Contents

- Introduction and motivation
- RF MEMS technology
- Design and simulation
- Test and analysis
- Summary and future directions

Page 2 Fraunhofer ENAS

General failure risks of MEMS Switches

Sticking	Large areas of electrodes or switch capacitance come into intimate physical contact (low roughness) and there is too low force to separate the contacts . Welting of α -spot, A-fritting.
Charging	Dielectric materials in between electrodes accumulate surface charges or charges are trapped in the material from fabrication (e.g. anodic bonding) or from operation.
Contact wear	Contacts physically destroyed/ deformed because of plastic deformation of too weak or too thin contact material, inclusions of dielectric residuals into the metal after mechanically breaking the insulating flayers.
Contamination	Organic residuals from fabrication/ packaging, water, oxide or hydrocarbons crack products on contact surface lead to high contact resistance when the contact force is not sufficiently high.
Hermeticity	Un-sufficient hermeticity leads to increased switch time (gas damping) and to risk of contact contamination.
Overload	Break trough of open contact leads to physical damage of the comparably extreme small sized contact tips. Current overload results in melting of contact material, welding and generation of alloy (e.g. AuSi) witch high specific resistance .
ESD	Driving electrodes and contact may be damaged by electrostatic discharge during fabrication (anodic bonding) or while handling.

Page 3 Fraunhofer ENAS

Goals of this Work:

Page 4

Fraunhofer ENAS

The target is potentially **high reliability of switch devices by novel technology and suitable design**.

- 1. No dielectric material between movable and fixed structures, **no charging.**
- 2. Wafer level vacuum encapsulation, and contact material deposition in on of the last fabrication steps, **lowest possible contamination.**
- 3. High force when closing and when closed, achieve stable and low contact resistance.
- 4. High force for separation, prevent sticking.

CHEMNITZ

MEMS Technology for RF Applications

- Air gap Insulated Micromachining (AIM) Process
- Highly resistive Si-wafers, no SOI-wafer necessary
- 50 µm deep movable structure, large electrode area
- Contact metal sputtering in contact area trough shadow mask

Page 5 Fraunhofer ENAS

Cost-efficient packaging (0 level) by wafer bonding in vacuum or in inert gas

trum für

Mikrotechnologien

Photograph of a single chip

ENAS

Fraunhofer ENAS

TECHNISCHE UNIVERSITÄT CHEMNITZ

Chip layout and special features

Page 7 Fraunhofer ENAS

TECHNISCHE UNIVERSITÄT CHEMNITZ

Simulation of Force and Motion

Analysis and optimization by FDTD

S-Parameter Magnitude in dB

Measurements

4 GHz type

Isolation: -30 dB @ 3 GHz Max. insertion loss: 0.5 dB including bond wires

> Page 11 Fraunhofer ENAS

Switches in actuated state

Measurements

80 GHz type

Isolation: -20 dB @ 60 GHz Max. insertion loss: 2 dB @ 60 GHz

Page 12 Fraunhofer ENAS

Test sequences for life time test

Test phases are consecutively run till manually finishing the test e.g. after 1 Billion cycles.

CHEMNITZ

Life time test results

CHEMNITZ

Summary, Future Directions

Reliable and proven MEMS technology

- Large electrode area, high force even at low voltage (>100 µN contact force with <5V and < 30 nA)
- No dielectric material between electrodes
- Wafer level hermetic vacuum package

Design and test

- •Mechanical design and simulation
- •Optimization of force and switch time
- •Analysis of µwave / mm-wave performance
- •Reliability test (cold switching)

Future directions

- Improvement of isolation and insertion loss by modified mm-wave line concepts
- Improvement towards maximum power handling capability of 30 dBm
- Non-linearity: IP3 >>60 dBm

