

Properties of Graphite Oxide, Carbon Nanotubes and their Composite Effect of Irradiation

Viera Skákalová

Max Planck Institute for Solid State Research Stuttgart **University of Vienna**

Collaboratations

Danubia NanoTech, s.r.o.

Research in science and technology

Sample preparation, characterization:

Viliam Vretenár Martin Hulman Peter Kotrusz Marcel Meško

TEM, modelling: Jannik Meyer Franz Eder Jani Kotakoski

Max Planck Institute, Stuttgart

Electronic transport:

Dong Su Lee Hye Jin Park **Hungarian Academy of Sciences:**

Ion irradiation: Zsolt E. Horvath Laszlo P. Biro Carbon (${}^{6}C=1s^{2}2s^{2}2p^{2}$, group IV) 2s, $2p_{x}$, $2p_{y}$ and $2p_{z}$ orbitals can mix with each other.

graphite : $sp^2 + p_z$

Different modifications of carbon

Danubia NanoTech, s.r.o. Research in nanoscience and nanotechnology

- Production of Single Wall Carbon Nanotubes
- Research on SWNT

Research on Graphene

Defects in SWNTs

- inelastic photon scattering

Skakalova, Kaiser, Detlaff, Arstila, Krashenninikov, Keinonen, Roth: Physica Status Solidi B, 245, (2008) 2280-2283

C⁴⁺-irradiation of SWNT paper:

 C^{4+} -energy = 23 MeV

Electrical conductivity

Electrical conductance of Ar⁺ irradiated thin SWNT networks

G(T) / G(290K)

Variable-Range Hopping:

Surface penetration by 30 keV Ar⁺ ions

Dose effects of 30 keV Ar⁺ ions

V. Skakalova, A.B. Kaiser, Z. Osvath, G. Vertesy, L.P. Biro, S. Roth, Appl. Phys. A 90, 597-602 (2008)

Viera Skákalová, Janina Maultzsch, Zoltán Osváth, László P. Biró, and Siegmar Roth, Phys. Stat. Sol. (RRL) 1, No. 4, 138–140 (2007)

Defects in Graphene

PHYSICAL REVIEW

VOLUME 71, NUMBER 9

The Band Theory of Graphite

P. R. WALLACE* National Research Council of Canada, Chalk River Laboratory, Chalk River, Ontario (Received December 19, 1946)

Hexagonal crystal structure of graphene

Two equivalent sub-lattices A and B

TEM study of electron irradiation: ¹²C vs ¹³C

Direct knock-on damage: Energy = 95 keV, Dose of $1.4 \times 10^9 \text{ e/nm}^2$

Damage induced by contamination

Jannik C. Meyer, et al., PHYSICAL REVIEW LETTER 108, 196102 (2012)

Measured and calculated knock-on displacement cross sections.

Monovacancy: dangling bond with a much lower emission threshold. Subsequent sputtering of this atom may double the cross section.

The lower boundary of the shaded areas correspond to the calculated cross section.

The upper boundary is twice the calculated value (expected for correlated sputtering).

Jannik C. Meyer, et al., PHYSICAL REVIEW LETTER 108, 196102 (2012)

Temperature dependences of conductance

Defects formed in presence of ammonia

H. J. Park, V. Skákalová, T. Iwasaki, J. C. Meyer, U. Kaiser and S. Roth, Physica Status Solidi B, 247(2010)2915-2919

Chemical Oxidation-Reduction of Graphite

Graphite oxide was first prepared by Oxford chemist Benjamin C. Brodie in 1859

Oxidation introduces functional groups:

- A: Epoxy bridges
- B: Hydroxyl groups
- **C:** Pairwise carboxyl groups

Reduction removes functional groups

- Restores sp² orbitals
- Leaves many structural defects

Microscopic characterization of thermally reduced Graphite Oxide (rGO)

SEM of GO flakes (Hummers)

STEM of reduced GO

Spectroscopic characterization of thermally reduced Graphite Oxide (rGO)

Microscopic characterization of thermally reduced Graphite Oxide (rGO) HR TEM: Jannik Meyer, Uni Ulm

Electrical conductivity of thermally reduced Graphite Oxide (rGO) In comparison with SWNT and SWNT-GO composite

- The electrical conductivity of SWNT-GO composite higher than that of SWNT
- Identical electron transport mechanism (Fluctuation Assisted Tunnelling) in SWNT-GO composite and SWNT paper
- Very high electrical conductivity in rGO film with metallic electron transport

Summary

SWNT networks:

	 Ion irradiation damages the structure and lowers electrical conductivity Thermal annealing removes defects in the SWNT structure
Graphene:	A structural damage affects severaly electronic transport
Graphite oxide:	Non conductive and transparent. Electrical and optical properties tunable by reduction of the oxide groups.
Reduced graphite oxi	de: Metallic character of electron transport
Composite SWNT-GO):

The same mechanism of electron transport like in SWNT film

Composite SWNT-reduced GO:

??????????? Under investigation.

Aknowledgment

The results have been acquired within several years of collaboration between

Max Planck Institute in Stuttgart

Danubia NanoTech (SME) in Bratislava

and

University of Vienna

SWNT networks

