Cea Direction de la Recherche Technologique

Micro-sources of energy for wireless sensor applications

H. Rouault (CEA/Liten), S. Fredon (CNES), F.Courtade (CNES), P. Pelissou (Astrium)

Energy source available on-board a spacecraft

- Characterization of the commercial thermo-generator
- Characterization of the CEA batteries
- Conclusion and perspectives

□ Thermal mapping for a LEO spacecraft

	Average orbital T° (°C)	Radiative sink T° (°C)	Delta T° (°C)
lowest T° structure or equipment	-4	19	-23
highest T° structure or equipment	35	19	16
Power distribution unit	27	19	8
On board computer	25	19	6
DCU	24	19	5
Transponders	20	19	1
payload video unit	35	19	16
Batteries	10	19	-9
RIU	32	19	13
Wheels	26	19	7
TWTs	14 to 22	19	-5 to 3
External radiator -x,+Y T°	18	-69	87
External radiator +Y T°	18	-50	68
External radiator +x,+Y T°	9	-69	78
External radiator -x,-Y T°	19	-33	52
External radiator -Y T°	-5	-88	83
External radiator -x,-Y T°	15	-59	74

Thermal gradient close to 23°C inside the spacecraft and 87°C outside the spacecraft

Thermoelectric devices: direct energy conversion from thermal energy (T gradient) into electrical energy (Seebeck effect)

□ The more realistic way to use the thermoelectric device

Characterization of a commercial TEG

□ The thermoelectric device : Micropelt

Dimensions	Base Total height incl. standard heat sink Weight	27 mm x 60 mm 33.5 mm 51g
Electrical characteristic of TGP 751 (neat)	Thermal resistance R Seebeck voltage Electrical resistance	18K / W 110mV / K (T _{amb} = 25°C) 240 to 350Ω (typical 300 Ω)
Operating temperature	For TGP751 (neat) For the module - Substrate side - Ambient side	[-40°C; + 140°C] Max. 105°C Max. 85°C

Supplier data

∆Tap = Ts(ubstrate) – Ta(mbient)

- **Evaluation of the electrical performances under vacuum (10-4mBars)**
 - ✓ Conventional measurements at $Ta = 20^{\circ}C$ and $50^{\circ}C$
 - In open circuit
 - On calibrated resistances:
 - \Rightarrow 100 Ω , 250 Ω , 450 Ω , 750 Ω and 900 Ω
 - $\checkmark\,$ In dynamic conditions
 - Controlled-computer power alimentation

 Δ Tap = Ts(ubstrate) – Ta(tmosphere)

- Experimental conditions and devices used in vacuum
 - ✓ Ts managed
 - ✓ By a thermo-regulated plate: $-15^{\circ}C \rightarrow 30^{\circ}C$
 - ✓ Several thermocouples on the heat sink of the TEG, on the plate, ...
 - ✓ Ta fixed
 - \checkmark By a plate equipped with heating resistances above the TEG
 - ✓ Regulation ensured by a "floating" thermocouple
 - ✓ Thermal isolation by MLI coverage improved at each new set up
 - ✓ For various ΔT , measurements of :
 - \checkmark U = output voltage of the TEG
 - ✓ via the plug-on module for the conventional measurements
 - ✓ Via the booster module for the test in "dynamic conditions"

Multimeter multichannels

- \checkmark Rb(ottom) = resistance of the PT100 embedded on the basis of the TEG \rightarrow T1
- ✓ Rt(op) = resistance of the PT100 embedded on the TEG top \rightarrow T2
- Ts = temperature of the heating or cooling plate by a thermocouple put above
 Ta = temperature of the atmosphere by a thermocouple

 \checkmark Inversion of the heat flux is possible \rightarrow the polarity of the TEG reverses

\rightarrow necessity to switch manually the TEG output polarity when the sign of Δ Tap changes → not automatic !

Characterization of a commercial TEG

Tests under vacuum (CNES), $U = f (\Delta T_e)$

at 50°C

 $\Delta T_{e} = T_{1} - T_{2}$

Characterization of a commercial TEG

Tests under vacuum (CNES), dynamic conditions $\Delta T_e = T_1 - T_2$

Ta = 50°C, Ts = -10°C, P ~10⁻⁴mBars

Position of the floating thermocouple

<u>Apparent and effective thermal gradient</u> $\Delta Tap = Ts - Ta$ and $\Delta Te = T_1 - T_2$

T = 50°C - Comparison under vacuum / in air with forced convection

 \rightarrow in vacuum, a very high apparent gradient is needed to reach equivalent ΔTe , compared to in air

For $\Delta Te = -8^{\circ}C$, $Ts = 30^{\circ}C$ in air and $-10^{\circ}C$ under vacuum at $Ta = 50^{\circ}C$

Behaviour under vacuum (10⁻⁴mBars) – static conditions $\Delta T = T1 - T2$

→ Restricted domain of ∆T, so U compared to in the air → similar performances at 20°C and 50°C

Under vacuum at 20°C and 50°C, In open circuit and on load,

8th ESA Round Table on Micro and Nano Technologies for Space Apj

ΔT (°C)

Behaviour under vacuum (10⁻⁴mBars) – static conditions $\Delta T = T1 - T2$

- → thermoelectric power of 100mV/K (supplier data: 110mV/K)
- → Max output power developed at 50°C on R = 250 450 Ω with Δ T = 9K→ 1.1mW

Compatible with supplier data

Behaviour under vacuum (10⁻⁴mBars) in "dynamic conditions" $\Delta T = T1 - T2$

8th ESA Round Table on Micro and Nano Technologies for Space Applications

~07

Characterization of the CEA batteries

Typical specifications of the CEA batteries

Technology	NCA / Graphite (CEA electrodes)
Nominal Capacity (mAh)	450
Nominal voltage (V)	3.6
Nominal Energy (Wh)	1.62
Cut-off Voltages (V)	3.0 - 4.0
Internal Resistance (mΩ)	175
Overall dimensions without pins (mm)	30 x 30 x 8.4
Volume (cm ³)	7.6
Mass (g)	15.5
Volumetric Energy Density (Wh/L)	213
Gravimetric Energy Density (Wh/kg)	105

Stored in cold chamber (-6°C) since September 2010
 4 batteries selected from their nominal capacity and their level of hermeticity (for sustaining the test in vacuum)

PR028, 036, 038 and 044

CEA battery	PR028	PR036	PR038	PR044
Nominal capacity (mAh)*	471	475	495	400

8th ESA Round Table on Micro and Nano Technologies for Space Applications

* Before storage at 6°C

Characterization of the CEA batteries

9 days

Cycling tests under vacuum (2. 10⁻⁵mBars), Ta = 27°C (not regulated)

- The protocol of the cycling tests
 - Cut off voltage : 3.0 and 4.0V
 - Discharge and charge rates applied:
 - > 3 cycles at C/10-D/10 ⇔ 60h
 - > 4 cycles at C/5-D/5 \Leftrightarrow 40h
 - > 4 cycles at C/2-D/2 \Leftrightarrow 16h
 - > 5 cycles at C/2-D ⇔ 15h
 - > 8 cycles at C/10-D/10 ⇔ 160h
 - > Measurement of the internal resistance during the cycling tests

8th ESA Round Table on Micro and Nano Technologies for Space Applications

Protected in MLI coverage

Characterization of the CEA batteries - results

Cycling performances under vacuum

 \rightarrow higher capacity at higher rate

Characterization of the CEA batteries - results

Cycling performances in air before and after the thermal cycling and under vacuum

□ Held of the TEG and the batteries to vacuum and thermal conditions OK

- > electrical performances similar, even better than in air for the batteries
- > TEG : 100mV/K, max 10mW in pulse (under $\Delta T_{ap} = 60^{\circ}$ C)
- Batteries : 370 to 420mAh at C/10 Up to ~300mAh at C
- □ To improve the local gradient of the TEG → to improve the output power
 - ➤ To analyse a TEG unit without the heat sink → heat thermal model and association in series and/or in // of several TEG chips
 - To equip the thermal chamber (thermal screens) for a best management of the thermal environment
- → test of evaluation in these new improved conditions
- □ To propose another Li-ion technology with reduced working potential range
 - > Based on another technology \rightarrow 1.9V or 2.3V
 - ➢ Lower nominal capacity in rigid casing for vacuum (TVM, laser welded) → 20mAh? or less
 - > Evaluation in cycling in space environment

→ evaluation of the coupling small battery / TEG / Ultra Low Voltage Power Management

Special thanks to:

Benjamin Calvet, Frederic Courtade, Stephane Fredon, Daniel Gervaud, Jérèmie Dhennin (CNES)Patrice Pelissou (ASTRIUM)Hélène Duchemin, Djamel Mourzagh (CEA/Liten)

Thank you for your attention