Direction de la Recherche Technologique

Micro-sources of energy for wireless sensorapplications

H. Rouault (CEA/Liten), S. Fredon (CNES), F.Courtade (CNES), P. Pelissou (Astrium)

- ❖ Energy source available on-board a spacecraft
- ◆ Characterization of the commercial thermo-generator
- ❖ Characterization of the CEA batteries
- ❖ Conclusion and perspectives

\Box **Thermal mapping for a LEO spacecraft**

\Box **Thermal gradient close to 23°C inside the spacecraft and 87°C outside the spacecraft**

 \Box **Thermoelectric devices: direct energy conversion from thermal energy (T gradient) into electrical energy (Seebeck effect)**

 \Box **The more realistic way to use the thermoelectric device**

Characterization of a commercial TEG

Q The thermoelectric device : Micropelt

[∆]**Tap = Ts(ubstrate) – Ta(mbient)**

\Box **Evaluation of the electrical performances under vacuum (10-4mBars)**

- \checkmark Conventional measurements at Ta = 20 $^{\circ}$ C and 50 $^{\circ}$ C
	- In open circuit
	- On calibrated resistances:
	- \Rightarrow 100Ω, 250Ω, 450Ω, 750Ω and 900Ω
- \checkmark In dynamic conditions
	- **EX Controlled-computer power alimentation**

8th ESA Round Table on Micro and Nano Technologies for Space Applications

[∆]**Tap = Ts(ubstrate) – Ta(tmosphere)**

\Box **Experimental conditions and devices used in vacuum**

- \checkmark Ts managed
	- \checkmark By a thermo-regulated plate: -15°C \to 30°C
	- Several thermocouples on the heat sink of the TEG, on the plate, ...
- $\sqrt{\frac{1}{12}}$ Ta fixed
	- \checkmark By a plate equipped with heating resistances above the TEG
	- ✓ Regulation ensured by a "floating" thermocouple
- Thermal isolation by MLI coverage improved at each new set up
- For various ∆T, measurements of :
	- \checkmark U = output voltage of the TEG
		- via **the plug-on module for the conventional measurements**
		- Via **the booster module for the test in "dynamic conditions"**

Multimetermultichannels

- \checkmark Rb(ottom) = resistance of the PT100 embedded on the basis of the TEG \to T1
- \checkmark Rt(op) = resistance of the PT100 embedded on the TEG top $\hat{\to}$ T2
 \checkmark Te temperature of the besting or cooling plate by a thermocouple
- \checkmark Ts = temperature of the heating or cooling plate by a thermocouple put above \checkmark Ta = temperature of the atmosphere by a thermocouple
-

Inversion of the heat flux is possible \rightarrow the polarity of the TEG reverses

second: the pulled manually the TEG subset polarity when the sign of ATsp.

→ necessity to switch manually the TEG output polarity when the sign of ∆Tap changes → not automatic ! changes \rightarrow not automatic !
dFebbon Missourd Nanc Fechnologies for

Characterization of a commercial TEG

Tests under vacuum (CNES), U = f (∆**Te)at 20°C**

at 50°C

Characterization of a commercial TEG

Tests under vacuum (CNES), dynamic conditions

Ta = 50°C, Ts = -10°C, P ~10-4mBars

∆**T**

 $\mathbf{T_e} = \mathbf{T_1} - \mathbf{T_2}$

Position of the floating thermocouple

Apparent and effective thermal gradient ∆Tap = Ts – Ta and ∆Te = T₁ – T₂

T = 50°C - Comparison under vacuum / in air with forced convection

→ in vacuum, a very high apparent gradient is needed to reach equivalent ∆Te,
compared to in air compared to in air

For ∆**Te = -8°C, Ts = 30°C in air and -10°C under vacuum at Ta = 50°C**

Behaviour under vacuum (10-4mBars) – static conditions $\Delta T = T1 - T2$

Restricted domain of ∆**T, so U compared to in the air**

 similar performances at 20°C and 50°C Under vacuum at 20°C and 50°C, In open circuit and on load,

8th ESA Round Table on Micro and Nano Technologies for Space Applications

ΔT (°C)

 $\Delta T = T1 - T2$ **Behaviour under vacuum (10-4mBars) – static conditions**

- **→ thermoelectric power of 100mV/K (supplier data: 110mV/K)**
→ Max output nower developed at 50°C on R = 250 450O with
- **Max output power developed at 50°C on R = 250 - ⁴⁵⁰**^Ω **with** ∆**T = 9K 1.1mW**

Compatible with supplier data

Behaviour under vacuum (10-4mBars) in "dynamic conditions" $\Delta T = T1 - T2$

8th ESA Round Table on Micro and Nano Technologies for Space Applications

702

Characterization of the CEA batteries

\Box **Typical specifications of the CEA batteries**

Stored in cold chamber $(-6^{\circ}C)$ since September 2010 \checkmark 4 batteries selected from their nominal capacity and their level of hermoticity (for quotaining the test in vecuum). hermeticity (for sustaining the test in vacuum)

PR028, 036, 038 and 044

8th ESA Round Table on Micro and Nano Technologies for Space Applications

* Before storage at 6°C

Characterization of the CEA batteries

9 days

Cycling tests under vacuum (2. 10-5mBars) , Ta = 27°C (not regulated)

- \Box **The protocol of the cycling tests**
	- Cut off voltage : 3.0 and 4.0V
	- \blacktriangleright Discharge and charge rates applied:
		- ▶ 3 cycles at C/10-D/10 \Leftrightarrow 60h
		- → 4 cycles at C/5-D/5 \Leftrightarrow 40h
		- → 4 cycles at C/2-D/2 \Leftrightarrow 16h
		- \triangleright 5 cycles at C/2-D \Leftrightarrow 15h
		- ▶ 8 cycles at C/10-D/10 \Leftrightarrow 160h
	- \blacktriangleright Measurement of the internal resistance during the cycling tests

8th ESA Round Table on Micro and Nano Technologies for Space Applications

Protected in MLI coverage

Characterization of the CEA batteries - results

Cycling performances under vacuum

8th ESA Round Table on Micro and Nano Technologies for Space Applications

Characterization of the CEA batteries - results

Cycling performances in air before and after the thermal cycling and under vacuum

■ Held of the TEG and the batteries to vacuum and thermal conditions OK
A electrical performances similar leven better than in air for the batteries

- Electrical performances similar, even better than in air for the batteries
- \triangleright TEG : 100mV/K, max 10mW in pulse (under ΔT_{ap}= 60°C)

△ Retteries : 370 to 430m \b at C/40 + Up to -300m \b at C
- Batteries : 370 to 420mAh at C/10 Up to ~300mAh at C
- \Box To improve the local gradient of the TEG \rightarrow to improve the output power
 \rightarrow To analyse a TEG unit without the heat sink \rightarrow heat thermal model and
	- \triangleright To analyse a TEG unit without the heat sink \rightarrow heat thermal model and association in series and/or in // of several TEG chins association in series and/or in // of several TEG chips
	- \triangleright To equip the thermal chamber (thermal screens) for a best management of the thermal environment thermal environment
- **test of evaluation in these new improved conditions**
- \Box To propose another Li-ion technology with reduced working potential range
 \triangleright Based on another technology \rightarrow 1.9V or 2.3V
	- Based on another technology \rightarrow 1.9V or 2.3V

	I ower nominal canacity in rigid casing for vac
	- Lower nominal capacity in rigid casing for vacuum (TVM, laser welded) \rightarrow 20m/h2 or less 20mAh? or less
	- Evaluation in cycling in space environment
valuation of the counling small battery (TEG / L

evaluation of the coupling small battery / TEG / Ultra Low Voltage Power Management

Special thanks to:

Benjamin Calvet, Frederic Courtade, Stephane Fredon, Daniel Gervaud, Jérèmie Dhennin (CNES)Patrice Pelissou (ASTRIUM)Hélène Duchemin, Djamel Mourzagh (CEA/Liten)

Thank you for your attention