TRIBOLOGICAL/STICTION BEHAVIOR OF ULTRATHIN QUASICRYSTAL FILMS DEPOSITED ON SILICON DEVOTED FOR MICRO/NANOTECHNOLOGICAL APPLICATIONS

Z.Rymuza, Jaroslaw Linke, L.Ocypa, M.Michalowski, M.Piwko

Warsaw University of Technology –Institute of Micromechanics and Photonics, Warsaw, Poland

W. Vollnhofer, C. Eisenmenger-Sittner

Technische Universität Wien – Institut fuer Festkörperphysik, Vienna, Austria

- INTRODUCTION
- PREPARATION OF QUASICRYSTALLINE COATINGS
- NANOTRIBOLOGICAL CHARACTERIZATION
 - AFM BASED MICROTRIBOMETER
 - FRICTION AND STICKING
 - WETTABILITY
- CONCLUSIONS AND OUTLOOK

Introduction

- The materials used in micro/nanotechnological applications like that used for fabrication of sliding components in MEMS/NEMS devices usually demonstrate poor tribological properties and in particular sticking inclinations.
- Special coatings are useful which can perform tribological functions as well as can perform antisticking function.
- Such interesting properties :relatively low surface energy and good mechanical resistance against deformations demonstrate quasicrystals e.g. complex metallic alloys (CMA)
- The low surface energy surfaces are interesting in sliding contacts in the applications in particular in vacuum conditions e.g. in space.

Introduction

- The ultrathin (with thicknesses in nanometer range) CMA films PVD deposited on single crystal silicon have been studied in the clean-room environment with the use of the Atomic Force Microscope (AFM) based microtribometer to identify their tribological and adhesive behaviors.
- The additional wettability studies supported the AFM tests. The results of these extensive studies will be presented and discussed in the report.

QUASICRYSTALS

PROPERTIES OF QUASICRYSTALS

- Relatively High Hardness
- High Youngs's Modulus
- Low adhesion and sticking forces
- Low surface energy
- High wear resistance
- Chemical inertness
- Low electrical and thermal conductivity
- Coefficients of thermal expansion like common metals

This list makes quasicrystals (QC) extermely interesting for tribological applications. Low surface energy and antisticking properties favor applications related to MEMS/NEMS and Nanoimprint Lithography (NIL).

DRAWBACKS OF QUASICRYSTALS

- High brittleness
- Complex composition

Issues of brittleness and composition may be attacked by depositing thin films of quasicrystalline material e.g. :

AI₅₉Cu_{25.5}Fe_{12.5}

QUASICRYSTALLINE COATINGS

Deposition by PVD Magnetron Sputtering

The composition of sputtered coatings is equal to the composition of the source even for multimaterial sources due to the direct transfer of the coating material from the solid phase to the vapor phase.

CRYSTALLINE STRUCTURE

Annealing a coating deposited at room temperature at 600°C produces a composite of QC and β phase.

NANOTRIBOLOGICAL CHARACHERIZATION

Investigated coatings: Substrate Material: Thickness: Phase composition:

Varied deposition parameters:

AlCuFeB Si 500 nm 40% QC Al₅₉Cu_{25.5}Fe_{12.5} 60 % Al₅₀Cu₄₀Fe₁₀ (ß phase) deposition temperature, sputter pressure, bias voltage

Nanotribological methods:

AFM based microtribometer: Surface topography, friction, adhesion (pull-off force), wettability, nanoindentation, nanoscratch and nanowear studies

Tests on CMA coatings

- TUW Si coated samples. Identified properties:
- By AFM studies: surface topography, friction, pull-off force (adhesive properties), nano-wear
- By nanoindentation: hardness, elasticity modulus, nano-scratch (nanoindenter with lateral force transducer)
- By wettability tests: contact angles, surface energy (polar, dispersive component): two liquids used: water, diiodomethane Tests performed in clean room lab:
- temperature $20^{\circ}C \pm 1^{\circ}C$ humidity $20\% \pm 5\%$
- atmospheric pressure, air atmosphere

CMA_TUW_110

CMA_TUW_120

Silicon wafer

Sample	Si
R _a parameter	0.2 nm
R _q parameter	0.3 nm

Surface topography					
Sample	Ra avg [nm]	Rq avg [nm]			
CMA_TUW_1					
09	7,0	10,5			
CMA_TUW_1					
10	10,1	12,7			
CMA_TUW_1					
11	5,2	8,0			
CMA_TUW_1					
12	5,6	7,3			
CMA_TUW_1					
13	5,9	9,6			
CMA_TUW_1					
14	3,3	6,1			
CMA_TUW_1					
15	6,3	8,9			
CMA_TUW_1					
16	6,9	9,6			
CMA_TUW_1					
17	4,9	6,7			
CMA_TUW_1					
18	8,6	10,8			
CMA_TUW_1					
19	5,6	7,5			
CMA_TUW_1					
20	5,9	7,5			
c :	0.0	0.0			

Surface topography

Pull-off force (AFM sticking tests)

	Probe with glass	ball	Probe with glass ball coated PMMA			
	Pull-off force	Standard deviation	Pull-off force	Standar d deviatio		
	[µiv]		[µiv]	n		
CMA_TUW_109	34	23	2,7	1,1		
CMA_TUW_110	150	105	3,2	2,4		
CMA_TUW_111	81	52	7,2	4,6		
CMA_TUW_112	46	66	8,3	4,7		
CMA_TUW_113	1,6	5,2	4,8	2,7		
CMA_TUW_114	0,8	2,9	6,3	5,8		
CMA_TUW_115	1,6	3,9	3,3	1,8		
CMA_TUW_116	8,4	12	5,8	4		
CMA_TUW_117	2,6	7,3	6,4	2,8		
CMA_TUW_118	2	7,5	3,8	2,4		
CMA_TUW_119	1,1	4	11	5,5		
CMA_TUW_120	1,1	5	5,4	2,1		
silicon	84	74	N/A	N/A		

Nano-wear

Nano-wear TUW Comparison

Sampl													
e:	9	10	11	12	13	14	15	16	17	18	19	20	Si
Dept													
h of													
wear	44,1												
[nm]	9	49	45	46	41	37,2	37,5	36	31	31,8	23	25	15

NanoindentationTUW Comparison

H [GPa]

Nanoindentation TUW Comparison

Si 214,3 203,5 181,6 175,1 Er 182,3 179,2 183,2 178,2 141,2 185,4 183,3 125,1 [GPa] 156,4 Н [GPa] 10,85 11,12 10,60 11,39 10,72 10,84 11,44 10,05 10,26 10,11 10,11 10,82 10,06

AFM BASED MICROTRIBOMETER

Probe for friction / pull-off force measurements				
type	IMiF, beryllium bronze			
tip	Glass ball 500µm			
length [μ m] \pm 10	2040			
width [μ m] \pm 5	410			
thickness [μ m] \pm 2m	60			
force constant [N/m]] \pm 5	110			

Velocity of sliding was 17μ m/s

STICKING/ADHESION (PULL-OFF FORCE)

Wettability studies

Droplets were placed on coatings with use of the automatic pipette, their volume was about 0.2 nl of water and

diiodomethane.

Owens-Wendt method was applied to estimate surface free energy

WETTABILITY

SUMMARY OF NANOTRIBOLOGICAL RESULTS

FINAL SUMMARY

Production of QC coatings

PVD magnetron sputtering allows for the production of QC coatings with complex composition. Deposition parameters can be used to optimize crystallinity and phase composition.

Nanotribology

Friction and adhesive /stiction properties can be optimized by the surface roughness : both friction and adhesion /stiction play very important role in the MEMS/NEMS and NIL application of coatings.

Conformal coatings on MEMS/NEMS and NIL molds Multi step or multi source processes may serve as tools to produce highly conformal coatings on MEMS/NEMS components as well as e.g. NIL molds with complex geometry and high aspect ratios.

ACKNOWLEDGEMENTS

The financial support of the FP7 Project appliCMA, Grant NMP3-SL-200-82 14407 Is gratefully acknowledged.

