

Nanostructured Thermoelectrics

Activities on Nanotechnology for Power Generation and Storage

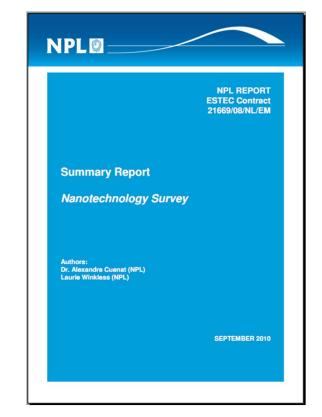
Laurie Winkless BSc MSc

ESTEC - Tuesday 16th October 2012

My Talk

- Intro to the National Physical Laboratory (NPL)
- Thermoelectrics introduction, applications, challenges
- What are NPL doing in nanostructured thermoelectrics?
- Energy Storage introduction, applications, challenges
- What are NPL doing in energy storage?
- Summary
- Conclusions

National Physical Laboratory


Founded in 1900

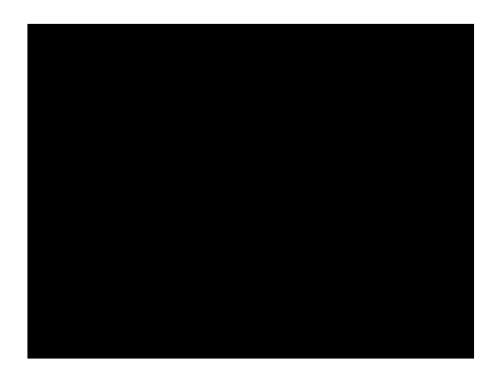
~ 500 scientists

NPL is the UK's national standards laboratory

 ensures accuracy, consistency and innovation in physical measurement and metrology

History of working with ESA

e.g. Nanotechnology Strategy (published 2010)


Thermoelectrics

Thermoelectric (TE) Materials can capture heat and transform some of it into electrical power.

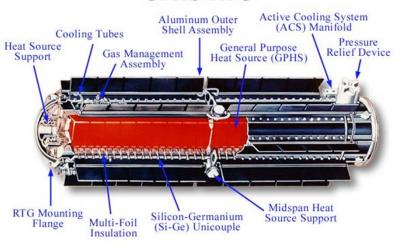
You need to maintain a temperature difference to

"drive" the device

More than 70% of the energy produced by a typical car engine is completely wasted, and most of that in the form of heat

Space Application

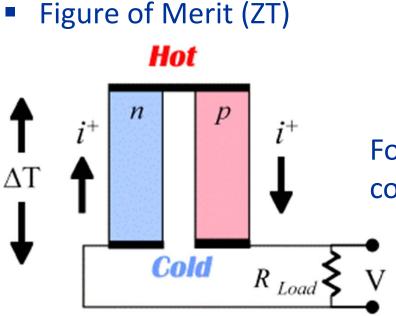
Radioisotope Thermoelectric Generator (RTG)


Lifetime: Up to 1000 years

Issues: Reliability, Maximum

Power

Temp Range: ~absolute zero to +500 ° C


GPHS-RTG

Thermoelectricity

- Traditionally, the term thermoelectric effect or thermoelectricity encompasses three separately identified effects, the Seebeck effect, the Peltier effect, and the Thomson effect
- What about Joule heating? The Peltier—Seebeck and Thomson effects are reversible, whereas Joule heating is not

$$ZT = \frac{\alpha^2 \sigma T}{\kappa}$$

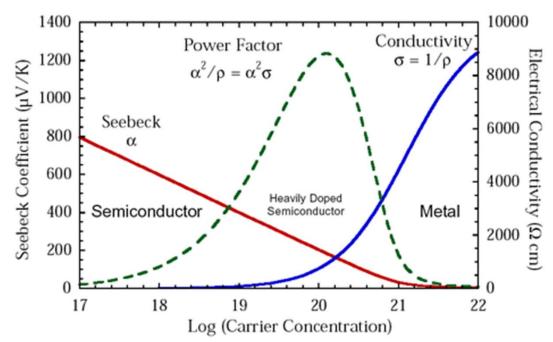
Power Factor = $\alpha^2 \sigma$

 α = Seebeck coefficient κ = thermal conductivity σ = electrical conductivity

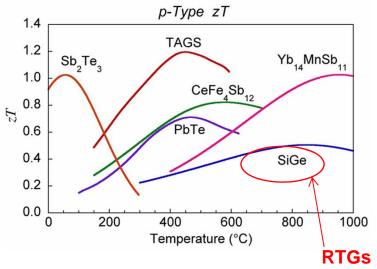
For **power generation**, connect p-n couples and the output voltage is

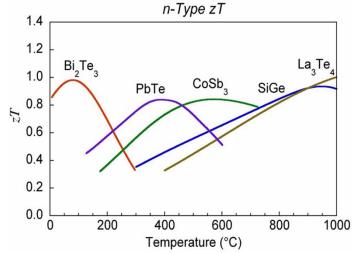
$$V = \alpha \Delta T - IR_{TEG}$$

Maximise efficiency when $R_{TEG} = R_{Load}$


Thermoelectricity

- So, for practical power generation from thermoelectric materials, we need high electrical conductivity but low thermal conductivity
- The thermoelectric power factor maximizes between a metal and semiconductor


$$ZT = \frac{\alpha^2 \sigma T}{\kappa}$$

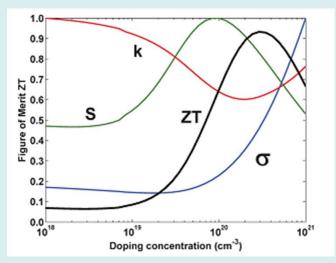

Good thermoelectric materials are typically heavily doped semiconductors with carrier concentration of 10¹⁹ to 10²¹ carriers/cm³

Thermoelectricity

$$\eta = \frac{T_{hot} - T_{cold}}{T_{hot}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + \frac{T_{cold}}{T_{hot}}}$$

- ZT is a property of the **material** used
- Efficiency improves asymptotically with ZT
- The ZT of a material is proportional to the efficiency of the device
- Each material has an optimum temperature range
- Measurements of ZT / efficiency are **conceptually simple** but results vary considerably. Total uncertainty in Z lies between **25 to 50%**!

Thermoelectrics: Challenges



In general

- Low efficiency of TEGs and TE materials less than 5% efficient in general – can this be improved?
- TE materials are expensive and some are toxic what are the alternatives?
- Maximum power vs. maximum efficiency where should we focus?

For space

- Radioactive source
- Need higher efficiency TE materials
- Materials appropriate for the environment (e.g. SiGe)

Nanostructured TE

- The goal is to increase the ZT of the material there are generally two options $ZT = \frac{\alpha^2 \sigma}{T}$
 - Decrease thermal conductivity
 - Increase thermopower / electrical conductivity
- Nanostructured materials have been shown to have reduced thermal conductivity compared to the bulk [REF]

Bulk PbTe $\kappa = 2.4 \text{ W/m.K}$

Nano-PbTe (with 2% Sb) $\kappa = 0.8 \text{ W/m.K}$ [Poudeu et al 2006]

 Increasing the electrical conductivity (while keeping α and κ at reasonable levels) is more challenging

What are NPL doing - TE?

- Focus on both materials and systems
- Work with device manufacturers improve their product
- Close links to end-users from the car, electronics and energy industries – bringing thermoelectrics to market
- Characterisation and nanometrology of thermoelectric materials
- We can measure the operating efficiency of a thermoelectric generator reliably and repeatably
- EMRP Project
- NexTEC Project
- Focus on high-temperature (800 ° C+) thermoelectric devices

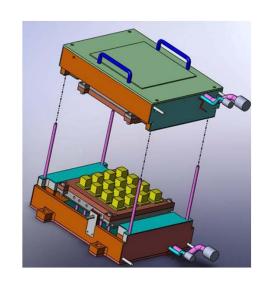
There are NO EXISTING STANDARDS for thermoelectric materials or devices – NPL is leading the effort to develop these standards

TE Projects

- Two EU-funded projects
- NexTEC: Next Generation Nanoengineered Thermoelectric Converters – from concept to industrial validation
- EMRP Metrology for Energy Harvesting

ZMIKES

Electrolux



NexTEC: NPL Achievements

- Low-temperature (RT 200 ° C) test rig
- High-temperature (up to 700 ° C) test rig
- Measurement of the thermal conductivity of a commercial TE module (7.5 % accuracy)
- New facility to measure Seebeck coefficient on small samples
- New facility to measure TE module efficiency by electrical spectroscopy
- Round-robin of Seebeck coefficient measurement
- A realistic three-dimensional COMSOL model of thermoelectric module
- The consortium has developed a new nanostructured TE material, suitable for use at high temperatures.
- Initial results show a superior performance to bulk Bi₂Te₃ and can be produced at low cost

EMRP: NPL Achievements

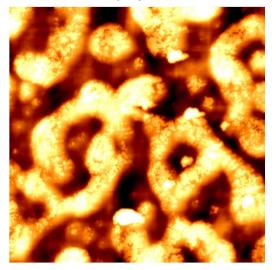
National Physical Laboratory

(a)

- Transport properties measurement in nanostructured materials
- Electrical transport on TE materials at the nanoscale and in ultra-high-vacuum
- Nanoscale temperature measurements on metals and insulators

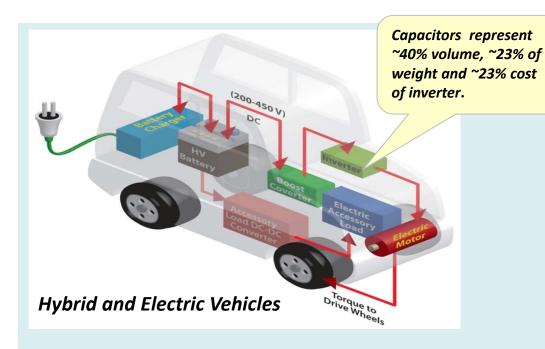
= Bi₂Te₃

_ Sb₂Te₃

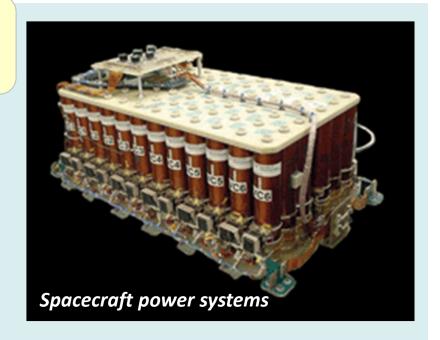

12 IIII

Reliable energy conversion efficiency measurement at the nanoscale

- Electrical characterisation of TE materials
- Thermal characterisation of TE materials

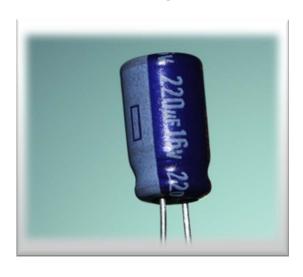

New methods for traceable efficiency measurement for nanostructured TE materials

- (a) ZT ~ 2.4 @ 300 K p-type, Bi_2Te_3/Sb_2Te_3
- (b) Nanostructured polymer PV



Energy Storage: Challenges

- High temperature operation (>140
 ° C)
- High voltage (600 V)
- Temperature and voltage stability
- High energy density
- Mechanically robust



- Operate under convection or forced-air cooling, and thus higher temperatures than terrestrial environment
- Vibration insensitive

Energy Storage: Challenges

Electrolytic

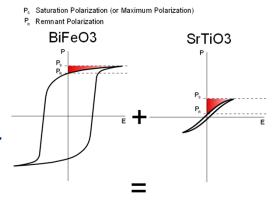
- High energy density
- But....
- Low thermal stability
- Low voltage rated
- Short life time

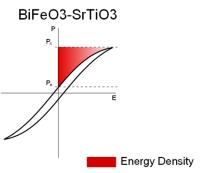
Ceramics

- Vibration robust
- Cost-effective
- Long life-time

But....

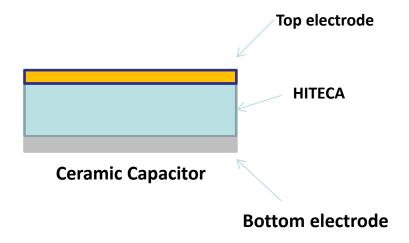
- Low energy density
- Capacitance varies with T


What are NPL doing in Storage?


Develop a new generation of high temperature stability, high energy density lead-free capacitors

Enable power
electronics to operate
at significantly higher
temperatures - up to (or
above) 200 ° C

Electrical and electro-mechanical characterisation of **ceramic multilayer actuator devices** for device qualification



What are NPL doing in Storage?

HITECA Capacitor: The key enabler – UK patent pending

- Lead-free ceramic
- Energy density 25 J/cc at 1200 kV/cm
 (2.5J/cc at 500 V)
- High temperature stability (15% of room temperature performance up to 220° C)
- High voltage stability
- Low ESR (equivalent series resistance)
- High breakdown voltage

Conclusions

Thermoelectrics

- Need to develop new, high efficiency devices
- NPL focus is on the validation and metrology of both materials and devices at high-ΔT
- Working closely with end-users (i.e. automotive, space and electronics industry) and partners across Europe
- Emphasis on describing the nanostructure of TE materials

Energy Storage

- Developing a new generation of high temperature stability, high energy density lead-free capacitors
- NPL focus is on the metrology necessary to validate these new capacitors
- Expertise in electrocaloric, multiferroic and piezoelectric materials

Thank you for your attention

Laurie Winkless

EMAIL: lw3@npl.co.uk