

SENSOSOL: MultiFOV high precision sun sensor

<u>F.J. Delgado¹</u>, J.M. Quero¹, J. García¹, C.L. Tarrida¹, J.M. Moreno¹, A.G. Sáez¹, P. Ortega² ¹Dept. de Ingeniería Electrónica, Universidad de Sevilla (US) ²Grupo de Micro y Nanotecnologías, Universidad Politécnica de Cataluña (UPC) SPAIN

8th ESA ROUND TABLE ON MICRO AND NANO TECHNOLOGIES October, 15–18 2012. Noordwijk, The Netherlands

Participants

1. University of Seville **MEMS LABORATORY** ARFAS:

SUN SENSORS FOR SPACE AND TERRESTRIAL APPS. MICROFLUIDICS FOR LAB-ON-CHIPS

2. SOLAR MEMS TECH.

SUN SENSORS AND THEIR INDUSTRY AND SPACE APPS. ELECTRONIC INTEGRATION www.solar-mems.com SOLA

Contents

- 1. INTRODUCTION
- 2. VECTORSOL DESCRIPTION
- 3. 4–QUADRANT DESIGN
- 4. FABRICATION
- 5. EXPERIMENTAL RESULTS
- 6. CONCLUSIONS

1. INTRODUCTION

- Sun sensor: measures the incidence angle of sun rays
- Satellital and industrial applications, such as attitude control of satellites and solar power plants
- Classification
 - Analog/digital, coarse/fine
- Analog sun sensors
 - Sensing elements: optical information to current/voltage conversion
 - Amplification stage

1. INTRODUCTION

- The MEMS group of the US has been developing sun sensors for several years
- Vectorsol: a real implementation of analog sun sensor
 - Scientific payload in the Spanish satellite Nanosat 1B, launched in 2009
 - Presented in the ESA-ESTEC in February 2009.

Silicon die: 8.5x7.5 mm²

PCB: 25x25 mm² aprox.

- Objective of this work: two improvements proposed
 - Increase of the accuracy.
 - Sensor more compact and robust.

2.VECTORSOL DESCRIPTION

A. Sensing elements

- One axis: pair of photodiodes in silicon bulk. The sun rays reach them through a cover glass layer with an upper window.
- Two pairs of photodiodes are placed orthogonally in order to measure the angle in both axes.

2.VECTORSOL DESCRIPTION

• For each axis, given the illuminated area in the photodiodes it is possible to determine the angle of incidence.

2.VECTORSOL DESCRIPTION

B. Signal adaptation circuits

 Consists of a current-to-voltage converter for each photodiode.

C. Calibration process

- The device is illuminated with a fixed solar simulator. The rotation is controlled by two motorized rotary stages.
- For each position, *R* function is calculated. By combining both axes, it is possible to obtain the inverse function:

$$R_{1,2} = f(\theta_x, \theta_y) \implies \theta_{x,y} = \bar{f}(R_1, R_2)$$

• During normal operation, the value of *R* is calculated and applied to the inverse function obtaining the angular position.

3.4-QUADRANT DESIGN

New structure

- Uses a single structure for both axes instead of two separated pairs of photodiodes.
 - Sensor more compact and robust
- In order to obtain the measures in both axes, the generated currents in the photodiodes are added two by two.

3.4-QUADRANT DESIGN

Higher precision

- By increasing the height of the glass layer, it is possible to manufacture a more accurate sensor.
 - As consequence, FOV is reduced.

- In each region, one different sensor provides the measure.
- To obtain complementary regions of the FOV, the upper window is displaced.

3.4-QUADRANT DESIGN

- Complete device design
 - Fine sensor (C): FOV $\pm 35^{\circ}$ in both axes.
 - Coarse sensor (A, B, D, E): Each sensor controls one quarter of the complete FOV.

- Alignment and glue bonding between cover glass and silicon
- Until now: optical alignment using marks
 - Tedious process
 - Non repetitive alignment errors
 - Displacement (~200µm)
 - Rotation (~1.3°)

- Manufacturing of an alignment frame using MEMS and SU8 techniques
- Improvement of the alignment error
 - ~20µm on displacement, and rotation better than 0.05°

Fabrication steps

- 1. PCB
- 2. Frame 1 placement
- 3. Silicon dice conductive epoxy bonding
- 4. Frame 1 removal
- 5. Wire bonding
- 6. Frame 2 placement
- 7. Borofloat epoxy bonding
- 8. Frame 2 removal and PCB gap bonding
- 9. Frame 3 placement
- 10. Cover glass epoxy bonding
- 11. Frame 3 removal
- 12. PCB gap bonding

Fabrication steps

- ► PCB
- Silicon dice

- PCB
- Silicon dice
- Borofloat

- PCB
- Silicon dice
- Borofloat
- PCB gap

 Final device

Signal adaptation circuits

- Due to the elevated number of photodiodes, the signals of the sensors are multiplexed.
- Operational amplifier is used as a voltage follower.
- Relationship between generated photocurrent (I_d) and output voltage (V_o):

$$V_o = V_{cc} - I_d \cdot R$$

- Complete device
 - The sensor and the electronics are encapsulated using an aluminum shell.

Calibration

- [-60°,60°] with 5° step in both axes.
- The generated current is obtained for each position and the R functions are calculated.

Calibration

Inverse function

• The inverse functions are obtained by combining the *R* functions in both axes.

Inverse function

- During normal operation, the value of *R* is calculated and applied to the inverse function in order to obtain the angular position.
- A verification process is required: 100 random positions are measured and compared with the real angle of incidence, providing us the value of 3σ .

Sensor	3σ (°)
С	0.15°
A, B, D, E	0.45°

7.CONCLUSIONS

- > Design of a high precision sun sensor for satellite applications.
- Improving the accuracy implies reduction of the FOV.
 - MultiFOV design.
 - 5 sensors will measure the entire FOV.
- New fabrication process using SU8 alignment frames.
 - Reduces the alignment error between PCB, silicon and borofloat.
- Experimental results
 - Calibration and evaluation of the device have been done.
 - Accuracy better than 0.2° has been obtained for fine sensor (ten times better than Vectorsol), and better than 0.5° for coarse sensor.

fjdelgado@gte.esi.us.es

THANKS FOR YOUR ATTENTION!

