

High Performance Open Loop Accelerometer for Space Applications

Stéphan Gonseth, Felix Rudolf (Colibrys)

Dick Durrant (SEA)

8th ESA Round Table on Micro and Nano Technologies for Space Applications

Topics

- Company Overviews
- Product Overview
- Requirements Specification
- Accelerometer Design, Prototyping and Test
- Accelerometer Performance
- Development Planning
- Conclusions and Future Work

High performance accelerometer for Space

Project Team

MEMS Detector design, development, prototyping and testing

PCB design/prototyping/testing. IMU integration aspects.

Company - Colibrys (Switzerland) Ltd

- Colibrys created in 2001
- SME, 80 employees
- Development and manufacturing of MEMS based products
- Facilities in Neuchâtel Switzerland engineering and production

Business sectors:

- High performance accelerometers for Aerospace/ Defence, Industrial and Energy markets
 - > 100'000 accelerometers manufactured /year
 - Harsh environment and safety critical applications
- MEMS contract manufacturing
 - Gaz sensors (automotive), optical telecoms components, pressure sensors, ...

Company - Colibrys (Switzerland) Ltd Accelerometer Products Families:

- Mature products, on the market since 14 years
- Open loop technology is basis for the space accelerometer

Company - Colibrys (Switzerland) Ltd

Applications

Inertial sensors

High precision guidance or navigation over long time and/or distance independent of GPS

Tilt sensors

- High precision angle measurements with high resolution, low temperature sensitivity and long term stability
- Platform stabilization, drilling

Vibration sensors

- Testing, monitoring and control of vibrations in structures for direct compensation, monitoring or preventive maintenance

Seismic sensors

 Earthquake detection systems, Structural health monitoring (buildings, bridges, dams), seismic imaging

Company - SEA (Systems Engineering and Assessment Ltd)

- SEA
 - Approx 250 employees; 80% professional engineers.
 - Offices in *Bristol* and Beckington, UK
- Space Systems
 - Instruments; sensors; electronics; (studies and flight units)
- Ground Systems
 - Radar transponders
- Non-space activities
 - Naval Systems
 - Airborne radars/equipment health monitoring
 - Traffic enforcement systems
 - Training systems for helicopters

Space IMU Requirements

• MEMS Accelerometers in a European IMU Context

- A range of requirements have been identified for IMU capabilities for envisaged European space missions.
- The number of IMUs required is currently quite small (<20 in 10 year period)
 - Althrough once a capability is available ways of using often follow.
- There is not currently a consistent view on performance requirements for the driving planetary lander applications.
- The highest variability is in the gyro requirements with competing IMU drivers across performance levels and power/mass/volume characteristics.

• Implications for MEMS Accelerometer Development

- Component level capability targetted at:
 - Integration into stand-alone 3-axis accelerometer unit.
 - Integration with existing 3-axis space gyro (FOG to MEMS) to provide IMU unit.
 - Integration into existing spacecraft equipment (eg. OBC, RIU, etc) to provide and an efficient (reduced packaging, power conversion and data management) accelerometer function.
- Testing at component and reference integrated (IMU) demonstration level.
- Qualification at component level.

Towards MEMS accelerometer for Space

• ESA ITT: Accelerometer for IMU feasibility demonstrator

- Requirements System Needs study
- Development and characterisation of 1g and 20g sensors based on MEMS industrial accelerometer
- Integration and characterisation in a space IMU
- Project completed in 2012
- Results:
- demonstrated basic performance
- Identified needed improvement: ASIC rad hardening, improvement on noise and nonlinearity

• ESA ITT: Accelerometer to TRL5

- Project start September 2012 project end July 2014
- Design and manufacturing of a Radhard ASIC
- Design, manufacturing and characterisation of a 1g & 20g Radhard accelerometer component
- Goal: Component at TRL 5, with full specs for space (environment and performance)

• Target applications:

- Aerobraking
- Interplanetary burn control
- Entry, Descent and Landing
- Planetary Rovers Navigation

Capacitive MEMS accelerometer

• MEMS capacitive accelerometer with suspended proof-mass configuration

- Analytical model → Transfer function and electro-mechanical model
- FEM model \rightarrow resonance frequency and shock resistance

- Out of plane capacitive MEMS approach advantages vs SOI
 - Larger gain provided by a larger capacity change per mass displacement (large surface (< 3 mm²) and small gap (2 μm)
 - Lower Brownian noise due to larger mass

Accelerometer Principles of Operation

• Open loop ASIC & proximity electronic

- MEMS sensor: acceleration → capacitance change
- Electronics:
 - C to V conversion (Self-balancing capacitor bridge)
 - Gain, scale factor (SF) and non linearity calibration
 - Calibration data stored in Memory
 - Temperature sensor

Trade off MEMS open loop vs. closed loop

• System complexity / reliability

- Open loop: low complexity: MEMS +ASIC
- Closed loop: high complexity: MEMS+ ASIC+ FPGA+ precision oscillator, Operates with high order sigma delta loop: powerful concept but complex

• Maturity (for navigation and guidance application)

- Open loop: well established, proven in many products
- Closed loop: under development for inertial applications

• Power

- Open loop: single 3.3V, power < 10 mW
- Closed loop, multiple supplies: 3.3V, 20V (for electrostatic motor), Power ~100 mW

• Performance

- Open loop meets requirements for space applications
- Closed loop has better performance for linearity and noise at the cost of higher complexity electronics

Driving factors for choice of open loop: Reliability, Complexity and Technology Maturity

ESA Project Accelerometer for IMU feasibility demonstrator

- Open loop accelerometer based on industrial ASIC
- Dedicated MEMS sensor
 - 1g MEMS sensor
 - 20g MEMS sensor
- Standard industrial package design for harsh environment
- Extended measurement and characterization with respect to Space specifications (no radiation)

Accelerometer demonstrators– Obtain results

Test Description / parameter	Measured Results	
Measurement range	± 1g	±20g
Output	2V/g	0.1V/g
Output bandwidth	> 150Hz	> 427Hz
Latency	< 1.2ms @ 100Hz	< 0.5ms @ 100Hz
Resolution	< 0.5mm/s² @ 10Hz	< 14.3 mm/s ² @ 10Hz
Axis misalignment		< 0.8° (1ơ)
Absolute bias	< 1.1mg (1ơ)	< 68mg (1ơ)
Short term bias stability	< 12.5 μg (1σ)	< 0.16 mg (1ơ)
Scale factor calibration tolerance	< ±1.5mV/g	< ±1mV/g
Scale factor stability	< 97.8 ppm (1σ)	
White noise	<14µg/√Hz @ 10Hz	<0.53mg/√Hz @ 10Hz
Flicker noise	< 7µg [100s]	
Nonlinearity		< 0.5%
Vibration rectification		83.6µg/g² rms
Mass	1.64g	
Dimensions	14.48 x 14.48 x 3.79 mm ³	

Bias Performance (absolute and stability)

Absolute

- Calibration made on the ASIC PGA stage
- < 3mg on 1g sensor (< 80mg on 20g)

Stability

- Short-term (2h): < 12.5ug (1 sigma) from -35°C to 65°C
- 1 day: < 55ug (max)

Allan Variance Analysis 1g

Allan Variance measurements realised in different configuration

- Detector level
- PCB level (include proximity electronic)
- high frequency (white noise)
- low frequency (long term stability)

```
Bias instability (10-10'000s)
```

• 3.24µg

```
random walk @ T=1s
```

• 7.04µg

IMU demonstrators- Obtain results

Prototype Detectors – Integrated testing at SEA and ESA

- Prototype detectors (1g and 20g) tested in a representative flight electronics.
- Confirmation of key component level results
- Guide for downstream IMU/component integration

ESA Project: Accelerometer to TRL5 - Approach

- New ASIC (open loop) with Identified performance improvements
- 1g and 20g out of plane capacitive sensor
- Planned dedicated package for dual sensor

Accelerometer to TRL5 – Performance and planning

Expected improvements

- Radhard tolerant → development of a Radhard ASIC
- Improve performance \rightarrow lower noise, improve NL and improve bias stability

• Planning

 ASIC and package design 	2013
 Accelerometer components 	2014
- include above the view tick and us disting to the	

Include characterization and radiation tests

• Outlook:

- MEMS based accelerometers are bound to replace the traditional electromechanical devices (e.g. QA3000)
 - Smaller, more robust, lower power, lower cost, non-ITAR
- Enabling technology allowing to address applications that are not possible today
 - Basis for low power, lightweight IMU's for mass and power constrained missions such as planetary landers and rovers

Thank you!

High performance open loop Accelerometer for Space Colibrys SEA