

esa 8th esa round table on micro and nano technologies 15 - 18 october 2012

European Space Agency

MEMS Sensors for Application in Space

V. Rochus, M. Akif Erismis, R. Jansen, M. Farghaly, M. Al-Moghazy, A. Ray Chaudhuri, P. Helin, S. Severi, S. Ranvier, H. Lamy, P. Rochus, A. Witvrouw, H.A. C. Tilmans and X. Rottenberg

presented by Harrie Tilmans

ESA-ESTEC, 17 October 2012

Intro MEMS for space

SiGe-based MEMS technology platform

- SiGe-MEMS MicroSensors@imec.be
 - Inertial sensors
 - Pressure sensors
 - Magnetometer
 - Other
- Conclusions

MEMS for **SPACE**

(spacecrafts, micro/picosatellites,)

Applications/potential use:

- GNC: "Guidance, Navigation and Control" (descent and landing operations, de-spin, attitude control,); Calculation of orientation and altitude of orbiting satellites
- Measuring satellite-generated magnetic fields (stemming from spacecraft electrical currents and residual magnetization) and measuring sheet of field-aligned currents (through measuring magnetic field $\vec{\nabla} \times \vec{H} = \vec{J}$)

Driving factors:

- Low mass,
- Small size/volume, high level of integration
- Low power consumption,
- Robust&Reliable (radiation tolerant)

Multiple sensor functions:

- Acceleration sensor (accelerometer)
- Angular rate/velocity sensor (gyroscope)
- Magnetic field sensor (magnetometer)
- Pressure sensor
- Sun sensor, bolometer,

\rightarrow MEMS provides a way to go!!

imec

Imec's SiGe-MEMS platform

"our working horse technology for building MEMS"

Imec's SiGe MEMS – PLATFORM

Generic poly-SiGe technology for MEMS:

- "stand-alone" MEMS, or,
- "MEMS above IC" (CMOS-MEMS)

Two structural SiGe layers:

MEMS structural layer (4µm standard)

- Optical (reflective)
- Electrical (metal trace)

5

- Piezo-resistive layer
- Thin film capping/packaging layer (4µm up to 10µm thick)

Gap SiGe structural layer of $0.5 \mu m$ (optional: $0.2 \mu m)$

Low-T processing (< 460°C)

Hermetic package seal (I-100 Pa)

IMCC MEMS sensors for application in pico-satellites 8th ESA round table on MNT for space 17 Oct 2012

IMEC's SiGe MEMS PLATFORM: EXAMPLES

with Panasonic

SiGe-MEMS INERTIAL SENSORS (IMU):

- ACCELEROMETERS - GYROSCOPES

Feature:

 $\overline{\rho_{SiGe}}$ (4500kg/m³) > ρ_{Si} (2332kg/m³)

Measure displacement $x_m - x_f = f(a)$

IN-PLANE DIFFERENTIAL CAPACITANCE ACCELEROMETER: PRINCIPLE of OPERATION

acceleration $a \rightarrow$ relative motion of proof mass \rightarrow capacitance change $\Delta C \rightarrow$ read-out

imec

17 Oct 2012

FABRICATION

Above-CMOS compatible SiGe MEMS Process

516 84nm 502 87nm 516 84nm

Fabricated Finger Assembly ~500nm gap

Fabricated Accelerometer

The Fabricated Accelerometer

imec

POLY-SiGe MEMS ACCELEROMETERS: PERFORMANCE

Thin film packaged device

Reference Brüel & Kjær 4383 (piezoelectric charge accelerometer)

Accelerometer	SiGe MEMS @imec (typical specs)
range	few g
sensitivity/resolution	0.1-1 mg (~0.02 mg/√Hz)
bandwidth	50-1000 Hz
supply voltage	3.3 or 5V or "higher"
shock resistance	few thousand g
radiation hardness	50-100 krad TID
lifetime	"many" years
chip size (1 axis)	~ 1x1 mm ²

imec

8th ESA round table on MNT for space

17 Oct 2012

IN-PLANE VIBRATORY GYROSCOPE: PRINCIPLE of OPERATION

Poly-SiGe MEMS GYROSCOPE: FABRICATION and PERFORMANCE

Above-CMOS demonstrator:

- I0 µm thick poly-SiGe MEMS gyroscope on top of 200mm HV 0.35µm CMOS (NXP)
 - VCO, PLL, amplifiers, etc.
 - Only 3 additional masks (not packaged)
- Movement detected by charge sensing (moving cap. combs)

Joint project with Bosch, NXP, IMSE-CNM, ASM

Gyroscope	SiGe MEMS @imec (typical specs)
range	20-200 °/s
sensitivity/resolution	0.001 °/s/√Hz (0.01°/s @ 50Hz)
bandwidth	20-100 Hz
supply voltage	3.3 or 5V or "higher"
shock resistance	~ thousand g
radiation hardness	50-100 krad TID
lifetime	"many" years
chip size (1 axis)	$\sim 2x2 \text{ mm}^2$

A. Scheurle et al., MEMS2007, pp. 39-42

imec

MEMS sensors for application in pico-satellites

8th ESA round table on MNT for space

17 Oct 2012 15

PRESSURE SENSORS:

piezoresistivecapacitive

MEMBRANE TYPE PRESSURE SENSORS: PRINCIPLE of OPERATION

imec

$$p \rightarrow \text{strain} \rightarrow \Delta R(p)$$

 $\rightarrow V_{\text{out}}(p)$

PIEZORESISTIVE PRESSURE SENSOR: FABRICATION

- 2-metal (Cu) 0.13µm CMOS
- W via to connect CMOS to MEMS
- SiGe structure thickness: $4\mu m$ (scalable)
- Gap: 3 or 1 μ m in this work (can be scaled down to $0.5\mu m$)
- Oxide (vacuum) sealed cavity
- B-doped piezoresistive SiGe layer ($G \approx 20$)
- Capacitive sensor combined

imec

8th ESA round table on MNT for space

Metal

lines

Oxide

sealing

✓ Metal

PIEZORESISTIVE PRESSURE SENSOR: PERFORMANCE

- SiGe membrane: 200x200 μm², 4μm thick
- "n-shape" piezoresistors

Piezoresistive pressure sensor	SiGe MEMS @imec (typical specs)
range	0.01-1 MPa
sensitivity	10-1000 mV/V/MPa
resolution	~ 10 Pa
supply voltage V_s	3.3 or 5V or "higher"
shock resistance	thousands of g
radiation hardness	50-100 krad TID
lifetime	"many" years
chip size	$\sim 0.5 \text{x} 0.5 \text{ mm}^2$

CAPACITIVE PRESSURE SENSOR: PERFORMANCE

- SiGe membrane: 300x300 μm², 4μm thick SiGe + 2μm SiNy
- gap=1µm

Capacitive pressure sensor	SiGe MEMS @imec (typical specs)
range	0.005-0.5 MPa
sensitivity	~ 0.01 fF/Pa/mm ²
resolution	~ 1 Pa
supply voltage V _s	3.3 or 5V or "higher"
shock resistance	thousands of g
radiation hardness	50-100 krad TID
lifetime	"many" years
chip size	$\sim 0.5 \text{x} 0.5 \text{ mm}^2$

imec

17 Oct 2012

MAGNETIC FIELD SENSOR

RESONANT XYLOPHONE BAR MAGNETOMETER (XBM): PRINCIPLE of OPERATION

XBM: Free-Free beam supported at nodal points of fundamental resonance mode

Alternating current *I* in magnetic field $B \rightarrow$ Lorentz force $F_L = \ell . I \times B$ \rightarrow Vibration of beam \rightarrow at resonance amplitude is amplified by *Q*:

$$\delta_{center} \propto B_y I Q$$
 linear!

 \rightarrow Deflection can be measured capacitively or optically and is a measure for applied field *B*.

imec

RESONANT XYLOPHONE BAR MAGNETOMETER (XBM): FABRICATION (in SiGe)

In-plane magnetometer

Out-of-plane magnetometer

imec

8th ESA round table on MNT for space

17 Oct 2012

RESONANT XYLOPHONE BAR MAGNETOMETER: PERFORMANCE

- Preliminary measurements using reference magnets
- Optical detection using laser
 Doppler vibrometer

Magnetometer (XBM)	SiGe MEMS @imec (expected)
range	nT's to T's
sensitivity/resolution	tens of nT (perhaps nT's)
supply voltage	3.3 or 5V or "higher"
shock resistance	few thousand g
radiation hardness	50-100 krad TID
lifetime	"many" years
chip size (1 axis)	~ 1x1 mm ²

ELECTROMAGNETIC RADIATION SENSORS:

- Optical (light) sensors
- EUV sensor
- Image sensor
- Hyperspectral image sensor
- Infrared sensor (bolometer)
-

Poly-SiGe MICROBOLOMETER: PRINCIPLE OF OPERATION AND FABRICATION

Low thermal conductivity of poly-SiGe, 0.03 W/cmK

 $\Delta V \approx \Delta R \approx \alpha \Delta T$

Poly-SiGe BOLOMETER STRUCTURE: IR DETECTOR and **PRESSURE SENSOR** (PIRANI)

10

Chopping frequency (Hz)

100

Noise (μV/Hz^{1/2})

OPPORTUNITY IN IMEC'S POLY SIGE PLATFORM TECHNOLOGY: IMU++ (+)

10 axis motion tracking:

- 3 axis acceleration sensor
- 3 axis angular rate sensor
- 3 axis magnetometer (electronic compass)
- pressure sensor

Advantages:

- Small & cheap
- Zero-level packaged
- Low-power consumption
- Generic (other transducers can be easily integrated)
- Allows further integration (thinning, stacking, ...)

Ultra Low Power CMOS Readout Circuit

Compass

Pressure

sensor

Y-atis Stroscope

3-atis neter

_ 2mm

+ atis Broscope

~2mm

imec

2-atis Broscope

Other MEMST.

CONCLUSIONS

SiGe-MEMS

- Provides a versatile platform for a range of applications/devices including space&picosatellites.
- Poly-SiGe is the MEMS material of choice:
 - Low T deposition \rightarrow above CMOS
 - Good mechanical properties (stress&stress gradient can be controlled)
 - Robust & Excellent mechanical reliability
 - High specific mass (>Si) \rightarrow good for inertial sensors
- SiGe-MEMS baseline process (incl. thin film capping) is in place

Functionality of a range of MEMS sensors (accelerometer, gyroscope, pressure sensor, magnetometer) has been demonstrated, but further development is needed to demonstrate real application in space/picosatellites.

The weight (and volume) of the multi-sensor module is expected to be a fraction (<1‰) of the weight of a picosatellite.

