

NANOTECHNOLOGIES FOR STRUCTURAL COMPOSITE MATERIALS

Review of latest research developments and open challenges towards application

V. Kostopoulos*, A. Vavouliotis, G. Sotiriadis, <u>A. Baltopoulos</u>, E. Fiamegkou, C. Kostagiannakopoulou, A. Masouras

*kostopoulos@mech.upatras.gr

Starting point

- Nano-composites have been around already since the '90s (e.g. carbon black)
- CNT gave a boost to research of nano-composites

The tipping point

Nano-modification of FRP matrix for hybrid fibrous composite materials

Multi-scale reinforcement

- Initial works related to structural composites:
 - EU-FP6-AEROSPACE-NOESIS: Aerospace nanotube hybrid composite structures with sensing and actuating capabilities, 2004-2009

Since then... *Nanotechnology*

Source: Tekes Programme Report 2006 (FI)

Background

- During the past decade:
 - A lot of money (>1b€) (specific to nano-composites)
 - A lot of people (>100 research groups in EU)
 - ...have been "invested" to investigate nanotechnology for materials

- Progress has been made, but where do we stand after >10 years?
- What do the end-users see and say?
- Our focus is on structural nano-composites

Introduction

- Review of approaches for nano-reinforcement of composites
- Modeling capabilities for nano-reinforced composites
- Up-scaling strategies towards final structures

Framework

- Structural Composites: E > 50GPa, σ > 100MPa
- Multi-functional performance
- Novel functionalities

Approaches

Concepts of utilizing nanotechnology in composites

Nano-Augmenting

- Multifunctional materials
- Hybrid nanocomposites
- Enhancement of Mechanical, Electrical and Thermal Properties
- Sensing properties (Damage monitoring, SHM)

Nano-Engineering

- Organized structures of nano-reinforcements (continuous nanofibers, bucky papers, aligned 2D structures, CNT forests)
- Multifunctional materials
- Hybrid nanocomposites
- Enhancement of Mechanical, Electrical and Thermal Properties
- Sensing properties (Damage monitoring, SHM)
- Actuating capabilities in various scales and various forms

Nano-Design

- Organized structures of nano-reinforcements (continuous nanofibers, bucky papers, aligned 2D structures, CNT forests)
- Multifunctional materials
- · Hybrid nanocomposites
- •Optimization of the enhancement of Mechanical, Electrical and Thermal Properties
- Sensing properties (Damage monitoring, SHM)
- Actuating capabilities in various scales and varius forms

Snapshots I Grown CNT forests and ropes

Snapshots II CNT Buckypaper preforms

Wang et al. Nanotechnology 2008;19(7):075609

Wang et al. Nanotechnology 2008;19(7):075609

Snapshots III

Growth on fibres and transferred forests

Wicks et al. Composites Science and Technology 70 1 (2010) pp. 20-28.

Garcia et al. Compos. Part A: Appl. Sci. Manuf. 39(6), 1065-1070 (2008).

Snapshots IV CNT doped matrix

Carbon fibers CNT

Vlasveld et al. Polymer 46(23), 10269-10278 (2005)

Preferential orientation through thickness

Qiu et al. Nanotechnology 18 (2007) 275708

Karapappas et al. J. Compos. Mater. 43(9), 977–985 (2009)

Performance enhancement CNT doped matrix

Novel aerospace structures via:

- Improved Fracture Toughness
- Improved Fatigue Life
- Increased electrical conductivity
- Increased thermal conductivity
- Damage Sensing Capabilities

Specific interest for space applications

- Stiffness to density
- Thermal Conductivity
- Electrical Conductivity
- CTE

ESA Projects NAREMA survey

ESA Projects NAREMA survey

ESA Projects NAREMA survey

Trade-off Routes Vs. Applicability

	Nano-integration Process			Manufacturing Process		
	Safety	Handling	Scalability	Resin Infusion	Autoclave	Quality Control
Resin Doping	- 4	+	-	- 🕌	-	-+
Growth				-		- +
Buckypaper preform		- 🕌	- +	+	- +	- +
Prepreg		**	**	N.A.	++	-

Incorporation of nano-phase *Challenges*

- Agglomerations
 - Effective use of nano-species
- High nano-phase content may be needed
 - Depending on the process different levels can be achieved
- Modification routes may alter the host material
 - It is usual to employ solvents in such processes
- IP Rights

Why modeling? *Importance of modelling @NANO-scale*

The road to the launch

Modeling "If you cannot model it, you can't fly it"

Nano-modeling capabilities **Background**

- Based on physical and chemical principles, predict material properties
- Understand trends and capabilities of materials
- To predict the performance of the materials under service conditions
- To design materials according to application needs

Nano-modeling capabilities Available approaches

Nano-modeling capabilities

Electrical and Thermal properties

Nano-modeling capabilities *Multi-physics problems*

....the other side

Large scale applications The scale gap

 When it comes to real and large structures, what is the strategy there?

Large scale applications

- Quality Control System
- ➤ Performance validation (...B-values?)
- Quantity requirement
- Continuous processes
- Safety issues in production ("The European Commission envisages modifications in some of the REACH Annexes and encourages ECHA to further develop guidance for registrations after 2013.")

*European Commission, Press release 3-10-2012, IP/12/1050

- Interest from major players pushes viable scenarios to the surface
- Alternative routes for adoption of nanotechnologies in existing production lines
- IP rights and availability of materials & formulations**

Standardization of Nanotechnology Latest addition...

- ISO/TS 27687:2008
 - Nanotechnologies -- Terminology and definitions for nano-objects -- Nanoparticle, nanofibre and nanoplate
- ISO/TS 80004-1:2010
 - Nanotechnologies -- Vocabulary -- Part 1: Core terms
- ISO/TS 80004-3:2010
 - Nanotechnologies -- Vocabulary -- Part 3: Carbon nano-objects
- ISO/TS 12805:2011
 - Nanotechnologies -- Materials specifications -- Guidance on specifying nano-objects
- ISO/TS 80004-4:2011
 - Nanotechnologies -- Vocabulary -- Part 4: Nanostructured materials
- ISO/TR 11360:2010
 - Nanotechnologies -- Methodology for the classification and categorization of nanomaterials
- ISO/TR 10929:2012
 - Nanotechnologies -- Characterization of multiwall carbon nanotube (MWCNT) samples
- ...

26

The Market Commercial products

Formulated intermediate products

Products

Indicative nano-enabled products for composites

Baytubes (Bayer Materialscience, D)

BuckyShield (Buckeye Composites, USA)

8th ESA-MNT, ESA/ESTEC, Noordwijk, The Netherlands 15-18 October 2012

TRL & Gartner chart

Structural nano-composites: Hype curve

European Union For the future of nanomaterials (overall)

- Nano-materials is a key enabling technology
- The global market for nano-materials is estimated at 11 million tons at a market value of €20 billion
- 300,000 to 400,000 employed in Europe
- Presently dominated by carbon black, amorphous silica etc.
- Products underpinned by nanotechnology are forecast to grow from a global volume of €200 billion in 2009 to €2 trillion by 2015

*European Commission, Press release 3-10-2012, IP/12/1050

 ...nano-materials for Structural applications is a rather small piece of the pie

Conclusions

- Targets to be achieved still remain:
 - Reduce mass and improve stiffness (!)

Steps to reach the target:

- Processing
- Tune specific properties
 - Thermal conductivity
 - Electrical conductivity
 - EM compatibility
- Tune combination of properties

- What should be expected the coming years?
 - Integration of nano-enabled products in commercial portfolios

Acknowledgements

The presented information were gathered, summarized and/or developed under the framework of the following projects. Their support is greatly acknowledged.

ESA-NAREMA ESA-NANO

EU-FP6-NOESIS Project ESA-NACO1 & NACO2

EU-FP7-ELECTRICAL Project EU-FP7-LAYSA Project

EU-FP7-SARISTU Project EU-FP7-IAPETUS Project

Applied Mechanics Laboratory Internal Projects

