PRESE

MICRO CORIOLIS MASS FLOW SENSOR FOR CHEMICAL MICROPROPULSION SYSTEMS

Remco Wiegerink Theo Lammerink Jarno Groenesteijn Marcel Dijkstra Joost Lotters

The Netherlands

R.J.Wiegerink / 17-10-2012

Contents

- Operating principe
- Previous work / background
- Current status
- Fabrication process
- Characterisation results
- Towards hydrazine flow measurement
- Conclusions

Sensor structure and basic operating principle

Why micro-Coriolis?

Advantages:

Independent of:

- flow profile
 - temperature
 - pressure

- density
- viscosity
- homogeneity

Less external mechanical influences due to low system mass / high resonance frequency

Disadvantages:

Higher stiffness + lower mass flow \rightarrow lower signal High manufacturing accuracy necessary

Previous work

- Worldwide 2 other groups active in the 'MicroCoriolis' field:
 - Enoksson, using silicon bulk micromachining and wafer bonding
 - ISSYS, using various bulk and surface micromachining techniques resulting in highly boron doped silicon tube walls

University of Twent

Our approach

- Use LPCVD silicon nitride tube walls
 - Thin (1.2 um) but strong walls
 - Inert material
- Research started in 2006 within the MicroNed programme
- Continued in PIDON-HTF, NanoNextNL and PRECISE

University of Twente

Process flow

University of Twente The Netherlands

Current status

University of Twente The Netherlands

Vibrometer measurements

University of Twente

University of Twente

Mass flow measurements

University of Twente

Density measurements

Towards hydrazine flow measurement

University of

- Required full-scale mass flow 6 mg/s per thruster
- 24 mg/s for 4 thrusters
- Existing sensor has full-scale range of 0.3 mg/s
- We need to increase the flow range by a factor 20

New design uses on-chip by-pass channel

University of Twente

- Ratios ranging from 20 to 100 have been designed
- Designs with lowest sensitivity suitable for 4 thrusters together

CleWin mask design

Other research topics

- Tube size and using parallel tubes
- Actuation
 - Using miniature magnets
 - Electrostatic actuation / parametric amplification
- Readout
 - Optimization of the capacitive readout
- Low-noise electronics
- Packaging / fluidic interconnects

University of Twent

First results

- First devices with by-pass channel have been fabricated.
- Filling of device with water did not give any problems.
- Further characterisation in progress

Conclusions

- Micro Coriolis flow sensors have been succesfully fabricated
- Progress is being made on all aspects of the device.
- A design was made for hydrazine flow using an on-chip by-pass channel to increase the full-scale flow to 6 µl/s
- First devices with by-pass channel were fabricated.
- Initial measurements/characterization has started.

University of Twent

PRECISE

The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007–2013]) under grant agreement n° 282948

University of Twente

www.mcps-precise.com

R.J.Wiegerink / 17-10-2012 20