

Optical MEMS for Earth Observation: an efficient optical cloud removal technique

Frederic Zamkotsian¹, Arnaud Liotard², Patrick Lanzoni¹, Thierry Viard², Wilfried Noell³, Benedikt Guldimann⁴, Marco Freire⁴, Stefan Kraft⁴

Laboratoire d'Astrophysique de Marseille, France Thales Alenia Space, France EPFL, Switzerland ESA / ESTEC, Netherlands

Frederic Zamkotsian

Instrumental needs

Instrumental needs using micro-opto-electro-mechanical systems (MOEMS)

Wavefront control - Deformable mirrors **Object selection** - Programmable slits csem Spectral domain application SMW #3 T=280 SMW # nsity [10¹⁴ Jy/sr] N W & A - Programmable gratings CO. T=240

> 9 13 Wavelength [µm] 8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

20

Phase

Intensity

Wavelength

MOEMS for Earth Observation

First phase: collecting all necessary data

Earth observation instruments or payloads
 Existing and potential optical MEMS components

Second phase

Pre-selection of at least 6 optical payloads following three different philosophies

- pre-selection of 2 market-pull concepts
- pre-selection of 3 techno-push concepts
- pre-selection of 1 concept coming from outside Earth Observation

□Final selection of the 2 most promising optical payload

Third phase

Detailed design of the 2 promising concepts

Synthesis of the study

Tiltable micromirror arrays

- Tiltable micromirror array
 - Active on intensity
 - High contrast
 - Digital mode only : light is switched between ON and OFF positions

- Single crystalline micromirror array for next generation IR multi-object spectrograph
- Collaboration between LAM and EPFL
- Goal: high contrast 1500:1
- Fill factor > 90 % obtained
- Concept
 - Electrostatic actuation
 - Precise tilt angle (landing beams)
- Realization
 - Combination surface and bulk micromachining

□ Wafer level bonding of two wafers:

one for th mirrors, one for the electrodes

Surface quality

- □ On 100µm x 200µm micromirrors: deformation < 10 nm
- Tilt angle precision < 1 arcmin</p>
- Actuation voltage < 100 V</p>

- Environmental tests
 - □ Vacuum (10⁻⁶ mbar)
 - 92K and 162 K
 - Mirrors tilt
 - Surface quality < 30 nm PtV in cryo</p>

DMD from Texas Instruments

- Most popular MOEMS device
- Micromirrors
 - 2048x1080 mirrors individually adressables
 - Pitch 13,68µm
 - □ Tilt angle: 12°
- Numerous applications
 - Main application: image display
 - Design modification not possible
- Spatial qualification test (ESA contract)
 - □ -40°C in vacuum (10⁻⁵ mbar)
 - Micromirrors hold in position during > 1500 s
 - DMD fully operational
 - Life test during 1038h, radiations, vibrations
 - No showstopper for space use

Programmable micro-diffraction gratings (PMDG)

- Action on phase
- **Based on 200\mum x 4\mum ribbons, with piston mouvment**
- Digital mode: light modulated between ON and OFF positions
- Analog mode: ribbons move in order to cancel partially the input light ("gray" scales)

Frederic Zamkotsian

PMDG from SLM

- PMDG from Silicon Light Machines (ESA study)
 - 1086 pixels
 - →6 ribbons (3 pairs) / pixel
 - 3 fixed ribbons / 3 piston ribbons
 - Pixel pitch 25.5µm
 - → Ribbon width / gap: 3.775µm / 0.475µm
 - →Ribbon length 220µm
 - \rightarrow Active area 75 x 28254 μ m²
 - Window with visible coatng
 - Monted on PCB
 - Heat sink on the back

Coded on 1024 levels (10 bits)

PMDG in operation

Ribbons images / localized source Filtering in Fourier plane

8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

PMDG performances

- Device for wavelength selection
 - Fully programmable
 - □ Steep edge filters, contrast > 30
 - Long term stability and reproducibility
 - Dynamical response (1 MHz)

8th ESA MNT Round table, Noordwijk, 15 – 18 October 2012

Micro-deformable mirrors (MDM), action on wavefront (phase)

- Actuators array
- Continuous mirror
- Boston Micromachines devices
 - Up to 4096 actuators, up to 5µm stroke.

First promising concept based on MOEMS : Cloud remover

Frederic Zamkotsian

MERIS return of experience :

Push-broom spectro-imager for Earth monitoring

Clouds in the field-of-view generates massive straylight
 Sun-glint completely saturates the detector.

Frederic Zamkotsian

Spectrometer characteristics (spectrum : 400 nm -> 1020 nm)

- Classical design : slit dimensions
 17mm x 20 microns
 740 columns
- New design : dynamical reflective slit
 Based on a micro-mirror array
 Enable to reject bright sources

Spectrometer characteristics (spectrum : 400 nm -> 1020 nm)

Spectrometer

- Classical design : transmissive slit
- New design : reflective slit
 - Compliant with the opto-mechanical design

Straylight analysis

- Complete simulations with ASAP
 Spectrometer nominal design
 Straylight ratio :
 - Straylight level / useful signal

Straylight without bright sources remover

Straylight with bright sources remover

8th ESA MNT Round table, Noordwijk, 15 - 18 October 2012

CAD view

Spectrograph simulator

Bright sources remover experiment results

Bright sources remover experiment results

Bright sources remover experiment results

Second promising concept based on MOEMS : Tuneable spectrometer with field of view

Frederic Zamkotsian

Spectrometer concept for push broom acquisition

- Use of a micro mirrors array
 - One dimension for the FOV
 - One dimension for the spectral dispersion

MOEMS (DMD) characteristics

Micro mirror dimension around 15 µm x 15 µm
 Number of micro mirrors in spectral direction around 1000
 Number of micro mirrors in spatial direction around 2000

Design parameters (other operating points are possible)

Spatial resolution = 5 m (for altitude = 700 Km)
 Total field = 10 Km (2000 pixels)
 Total bandwidth = 200 nm (ex : from 400 nm to 600 nm)
 Theoretical spectral resolution can be tuned from 0,2 nm to 200 nm

Instrument characteristics (for here above operating point)

Entrance pupil dimension Φ_{PE} = 270 mm
 Afocal magnification ratio G around 5 (grating size = 54 mm)
 Focusing focal length f_{FOC} = 380 mm (F-number 7.6)
 Grating period around 300 lines/mm for visible range

Bench demonstrator will be developed within a CNES study

Frederic Zamkotsian

MOEMS for Earth Observation

- Space optical payloads can benefit from MOEMS technology
- Optical MOEMS can bring new services/functionalities in Earth Observation
- Two promising concepts have been proposed and studied:
 - Cloud removal based on Digital Micro-mirror Array
 - Tunable spectrometer with field-of-view based on TI's DMD

frederic.zamkotsian@oamp.fr