

Micro and Nano-Technologies for opical instrumentation

B. Guldimann, J. Pereira Do Carmo, L. Gaspar de Venancio, S. Kraft* TEC-MMO, *EOP-PIO, esa-estec

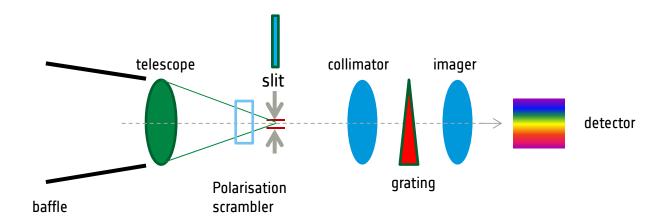
MNT Roundtable 2012

www.esa.int

European Space Agency

Table of content

MNT in optical spectrometers


MNT in active optical instruments

Fully integrated imaging spectrometer

MNT in Telecom Payload

MNT in optical spectrometers

How can MNT improve spectrometers?

2 parallel studies on "optical MEMS for Earth observation applications"

Consortium 1: Luso Space, SSTL

Contract#: 100810

> Selected Applications:

1) De-clouded spectrometer

Variable slit spectrometer

Consortium 2: Thales, LAM, EPFL

Contract#: 101991

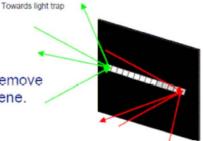
Selected Applications:

1) De-clouded spectrometer

2) Programmable spectrometer

De-clouded spectrometer:

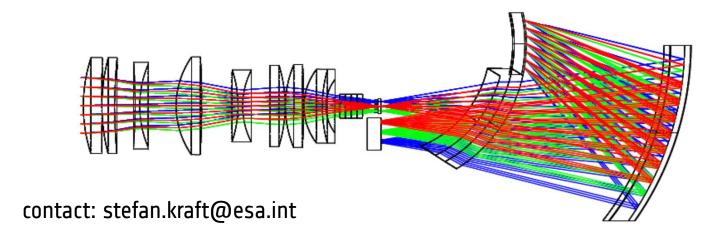
Goal

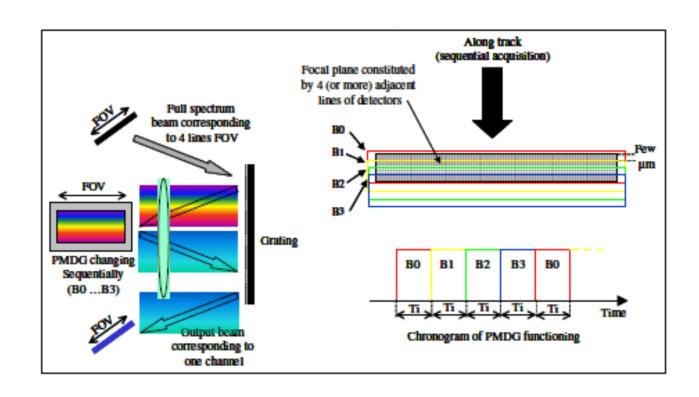

- The sea observed in infrared wavelength is very dark,
- But very bright signal reflected by clouds or the sun-glint
- prevent from the CCD saturation
- Very high dynamic required for the detector.

Working principle

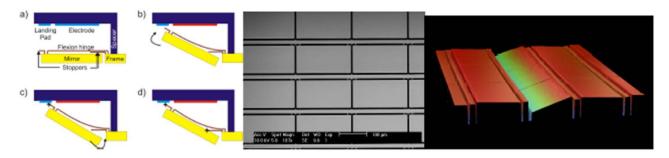
By opening or closing the shutter/mirror, we could remove the sun-glint or clouds reflection of the observed scene.

Component


■ DMA or a MSA into an intermediate focal plane (eq. spectro slit).


<u>Variable slit spectrometer</u>: Multiple entrance slits have been suggested for the FIMAS grating spectrometer:

- Each slit is filtered to a 14nm band:
 - O₂A band limited to 758nm-772nm
 - O₂B band limited to 686nm-700nm
- O₂A band is imaged at 0.1nm and 0.3nm resolution
- O₂B band only at 0.3nm
- With only one slit, the range could be increased to 650nm-800nm



Programmable spectrometer:

3/4 of the most interesting concepts are based on DMA type of components:

According to the study DMA would help to reduce stray-light, leading to:

- >higher measurement accuracy
- >more usable pixels and therefore more and new scientific results possible

More applications for the DMA are:

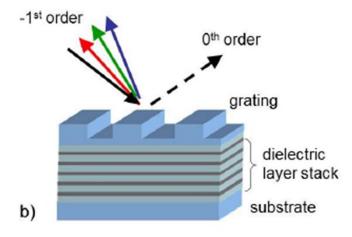
- >scene brightness equalisation (1D array)
- >read-out smear elimination (1D array)
- >multiobject spectroscopy (2D array)

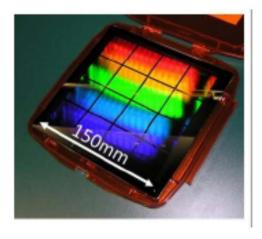
1/4 of the most interesting concepts is based on variable slit type of component:

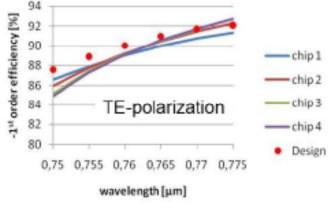
Variable slit would help to:

- >increase spectral range
- >flexibility

Optical gratings




IOF, Jena contracted by Astrium for grating development for Sentinel 4 (ESA) mission


Parameter	Value
grating type	reflection grating
grating period	667nm
wavelength range	750nm 775nm
diffraction efficiency +1st order	> 70%
polarization sensitivity $\frac{\left \eta_{\mathit{TE}} - \eta_{\mathit{TM}}\right }{\eta_{\mathit{TE}} + \eta_{\mathit{TM}}}$	< 2%
angle of incidence	38°
grating size	~80mm diameter

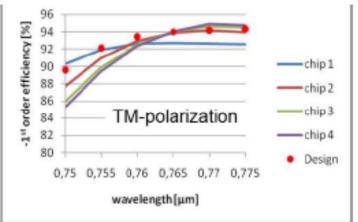

grating size ~80mm diameter

Table 1. Preliminary optical parameters of the NIR-spectrometer grating for the Sentinle-4 mission.

Optical gratings

New grating developments for:

Sentinel 4 (UV-VIS-NIR)

Sentinel 5 (UV-VIS-NIR-SWIR)

FLEX (NIR)

CarbonSat (NIR-SWIR)

Expected specifications:

Highly dispersive

Low straylight

Low polarisation sensitivity

Highly efficient

Leading to compact instrument

>are the drivers for new grating designs

<u>Example of SWIR grating for Tropomi and Sentinel-5</u>:

Development of immersed diffraction grating for the TROPOMI-SWIR spectrometer

A. H. van Amerongen*a, H. Visserb, R.J.P. Vinkb, T. Coppensa, R.W.M. Hoogeveen

a SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The

^b TNO Science and Industry, Stieltjesweg 1, 2628 CK Delft, The Netherlands

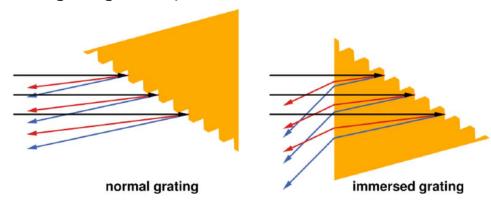
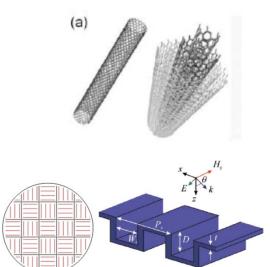


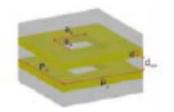
Figure 1. Sketch of the principle of a normal reflection grating (left) and an immersed grating (right), lithographically produced in silicon. The resolving power of the immersed grating is increased with a factor 3.4 of the refractive index as compared to the normal grating. In reality the grating surface is 60 mm in length and the line spacing is 2.5 μm.

Metamaterials

2 parallel studies on "metamaterials for optical and photonics applications"

> Results are summarized in: Luis Gaspar Venancio et al., Proc. of SPIE Vol. 8146 81460E-13


1. Survey


2. Classification and selection

Criterion	Description
Application range	This criterion addresses the versatility of the metamaterial.
Benefit	The metamaterial is judged beneficial if clear advantages are shown with respect to available standard technologies.
Feasibility and manufacturability	With this criterion only metamaterials which have been already manufactured and tested can be retained.
Maturity	With this criterion the manufacturing process maturity is assessed.

Item	Description	Function
Ab6	Low-density array of long nanotubes	Absorber for straylight baffling
P2	1D meander structure	Polarisation scrambling
P4	Double mesh structure	Polarisation scrambling

3. Study

Metamaterials

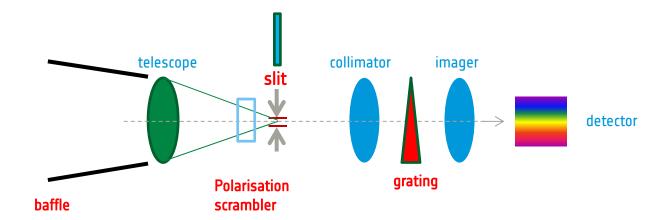
Title of activity: Metamaterials for optical and photonics applications for space

Contract numbers: 4200022943/10/NL/AF and 4200022944/10/NL/AF

Primes: cosine Research and Fraunhofer Institute (INT)

Start date: 22/06/2010 End date: 19/01/2012

TRL: 2

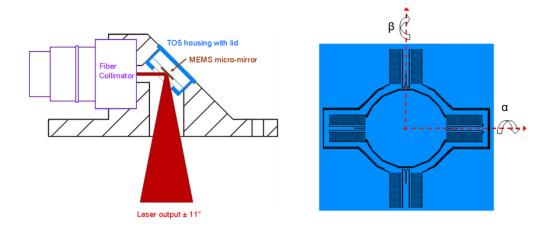

Contact person Luis M. Gaspar Venancio

Phone: +31 (0) 715658054

Email: luis.miguel.gaspar.venancio@esa.int

MNT in optical spectrometers

MNT in active optical instruments


Optical MEMS development for rover navigation applications

Title of activity: Micro Laser Beam Scanner

Prime contractor: Sercalo

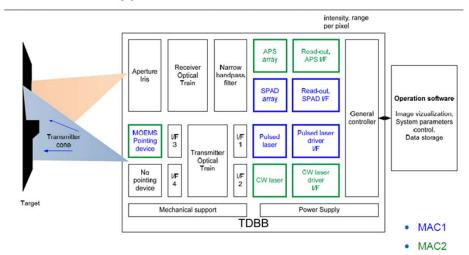
Contract number: 4000103902/11/NL/CP

Start date: Q3 2011 End date: Q3 2013 TRL level step: 3 to 5

contact: Joao.Pereira.Do.Carmo@esa.int, ext.# 56169

MNT in active optical instruments

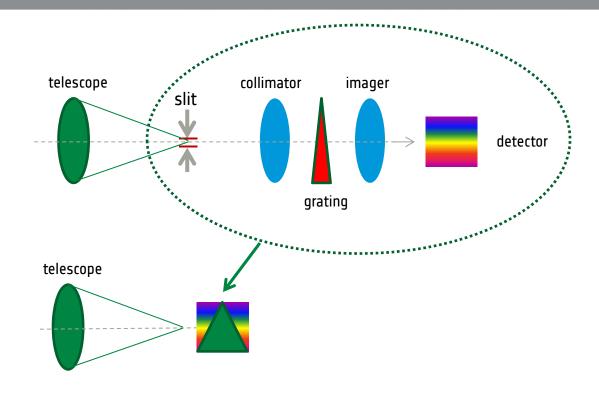
Hardware development for miniaturized imaging LIDAR System


Title of activity: Miniaturized Imaging LIDAR System (Phase 1)

Contract number: 4000103730/11/NL/EM

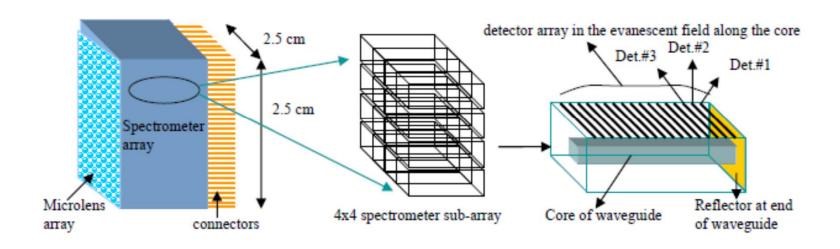
Prime contractor: CSEM

Start date: Q2 2011 End date: Q1 2013 TRL level step: 2 to 3


Baseline approach for the demonstrator breadboard

contact: Joao.Pereira.Do.Carmo@esa.int, ext.# 56169

Fully integrated imaging spectrometer



Fully integrated imaging spectrometer

Basic principle:

Published: B. Guldimann, Proc. of SPIE Vol. 7930 793000-5

Fully integrated imaging spectrometer

Feasibility study with hardware demonstrator

Title of activity: Miniature high performance imaging spectrometer for remote sensing

Prime contractor: MICOS

Contract number: 4000104975/11/NL/NA

Start date: Q1 2012 End date: Q1 2014 TRL level step: 1 to 3

contact: Benedikt.Guldimann@esa.int, ext.# 53592

Telecom payload

Optical MEMS hardware development

Title of activity: Large optical MEMS switches architectures for broadband

applications

Prime contractor: Sercalo

Contract number: 19531/06

End date: Q2 2011

Front View

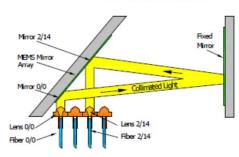


Figure 4: One Chip Design (front view)

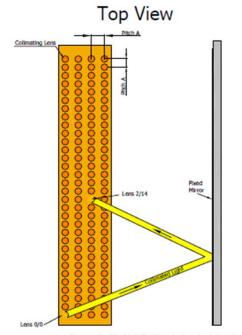


Figure 5: 50x50 MEMS switch principle, One Chip Design (top view)

Telecom payload

Large optical MEMS switches architectures for broadband applications

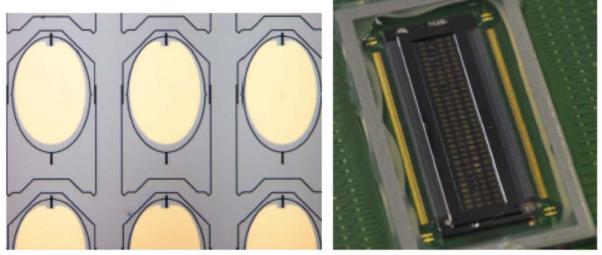


Figure 16: Final MEMS chip from mask set rev. 2 with gold deposition on the mirror frontside.

contact: Bernhard.Furch@esa.int, ext.# 53195

Thank you!

European Space Agency