

LTCC for MEMS and Multi-Chip RF Integration and Packaging

Tauno Vähä-Heikkilä and Markku Lahti VTT Technical Research Centre of Finland

Outline

- Introduction to LTCC
- LTCC for wireless applications
- Experimental results
- Conclusions

LTCC: Low Temperature Co-Fired Ceramics

- Multi-layer technology platform for wide variety applications
 - Telecom&wireless, automotive, sersor&opto packaging, medical, chemical, defence, aerospace&space,...

LTCC: Packaging and Integration Technology

- LTCC is used for packaging
- Additionally, it is a passive 3D integration technology with
 - High component density
 - Increasing functionality
 - High assembly yield
 - Good crosstalk and radiation management
 - Good stability and reliability
 - Low system cost

Typical LTCC process flow

LTCC Properties

Parameter	Typical values with commercial manufacturer	VTT's typical min/max values
Min line width [µm]	150	50
Tolerances of linewidths [µm]	±20	±5
Layer-to-layer positioning accuracy [µm]	60	15
Min diameter of vias	150	100
Min spaces for vias	300	100
No. of layers	6-24	4-20

LTCC is a Real 3D System-in-Package Technology

- Metallizations in several layers
 - Vias between layers
 - Vias used for forming EM structures like substrate integrated waveguides, resonators
- Several dielectric layers
 - Can have cavities between the layers
 - Ceramic can be shaped to have 3D forms

LTCC for Micro and MM-Waves

- LTCC is used for realizing high-Q passive component, multi-layer elements such as filters, matching networks, antennas, feed networks, etc.
- These are integrated with active components
- The whole system is packaged forming modules
- Following examples show how LTCC has been used as component technology, packaging technology, and module integration technology

20/09/2012

Development work for RF MEMS Packaging with LTCC at VTT

- Generally eutectic AuSn is used as soldering material for lid attachment
 - High melting temperature can degrade performance of MEMS components
 - VTT has studied low-melting temperature solder materials and found promising alternatives for hermetic sealing
- Vacuum packaging demonstrated to result in hermetic package
- Strains are much lower with low-T solder in comparison with AuSn
- Miniaturisation of packages by reducing sealing ring width and still maintaining hermeticity

10

RF Component Packaging with LTCC

Transmission lines 2, 3 and 4 mm sealing rings, half module

RF MEMS Packaging with LTCC at VTT

 LTCC can be used for packaging of sensitive RF MEMS components as a part of phased arrays and reconfigurable radio front-ends

12

LTCC Modules for Hybrid 3D Integration and Packaging

Antenna Arrays for 60 GHz High Data Rate and Wireless Sensing Applications 4x4 array

• Aperture coupled 4x4 antenna array on LTCC developed at VTT

- •Maximum gain: 18.2 dBi
- •-10 dB impedance bandwidth: 5.8 GHz

Fig. 17. Simulated (IE3D) and measured gain patterns for a 4×4 array with a large embedded cavity and Wilkinson feed network.

60 GHz Transceiver Demonstrators

• Examples of 60 GHz CMOS transceiver demonstrators integrated with LTCC antenna arrays

Transceiver with TX & RX patch antennas

60GHz TX with patch array antenna

Transceiver with TX & RX end-fire antennas

Conclusions

- LTCC is a cost effective technology for RF modules
- Passive components such as filters, power dividers and antennas can be realized on LTCC
- LTCC modules have been demonstrated from DC to 100 GHz at VTT and example results were presented here

VTT creates business from technology