

Feasibility Study of a MEMS SOI Capacitive Accelerometer

A. Petropoulos, G. Fikos, R. Triantafyllopoulou, G. Glykiotis, G. Metaxas, V. Grammatikakis, E. Zervakis

ESTEC, 17 October 2012

www.theon.com

Theon sensors

Layout

- 1. Introduction
 - About Theon S.A.
 - Theon ESA Background
- 2. Existing MEMS capacitive accelerometer
 - MEMS transducer
 - ASIC
 - Performance

3. Accelerometer Redirection activity

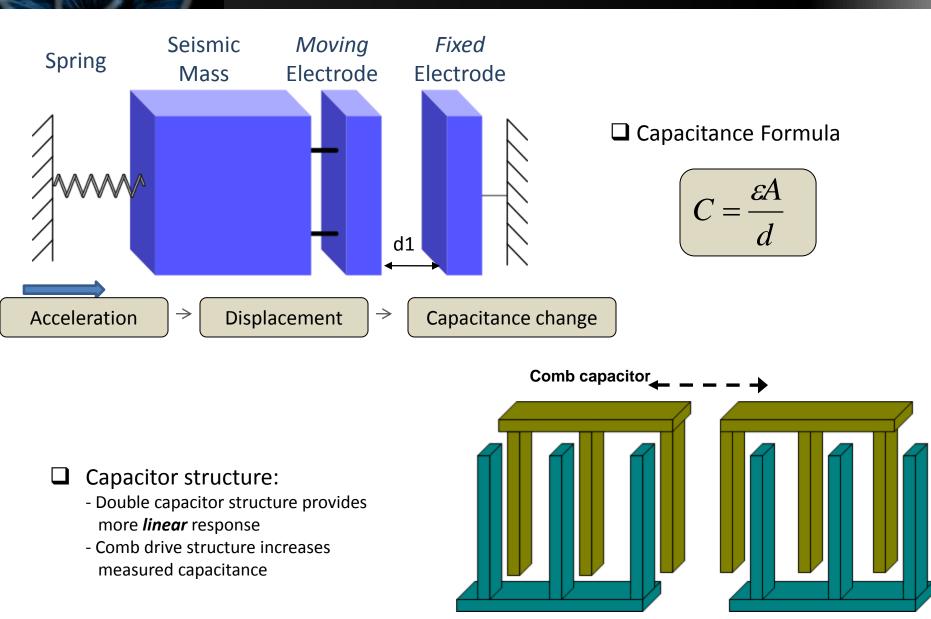
- MEMS transducer redesign
- ASIC upgrading
- Sensor packaging
- Results

4. Summary & Roadmap

THEON MEMS activities & products

- Design and Simulation of Silicon based micro sensors (MEMS)
- Design and Simulation of electronics, for signal conditioning and interfacing of micro sensors
- Design of MEMS Modules Mechanical Housing
- Design of substrates
- System packaging and microassembly / Wire and Die Bonding
- System integration and assembly
- Systems Testing and Characterization

Process technology	MEMS	ASIC	Products
MEMS Fusion Bonding for Capacitive Pressure Sensors (THEON)	Capacitive Pressure Sensor		Pressure Sensor
MEMS Surface Micromachining for Capacitive Inertial Sensors		Capacitive Interface	Accelerometer Accelero Meter 15314P 11/21A 8 No.0005
MEMS Bulk Micromachining for Resistive Flow Sensors 0.18um Mixed- Signal CMOS	Capacitive Accelerometer	Resistive	Mass Flow Sensor
	Flow	Interface	


THEON – ESA History

- 1. "Feasibility Study for MEMS-SOI Capacitive Accelerometer" (Sep 2007 - Nov 2008)
- Evaluation / selection of the fabrication technologies for the transducer/ASIC
- Identification / evaluation of the various accelerometer architectures and design topologies
- Selected MEMS/CMOS technologies can serve space applications (based on 5 case studies as provided by ESA)
- Identification of ASTRIUM ST as an end user and Launcher as the target application
- 2. A. "Flight Demonstrator for a MEMS Accelerometer for Launchers" (Sep 2009 PDR on Dec 2010)
- Design and fabrication of MEMS transducer
- Design and fabrication of CMOS signal conditioning electronics
- The activity successfully reached PDR, when it became evident that there was insufficient market and the activity was redirected

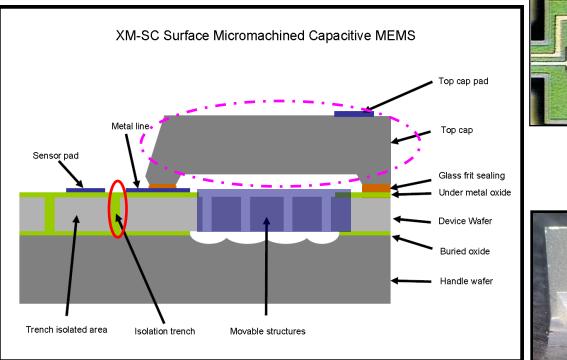
B. "Accelerometer Re-direction study"

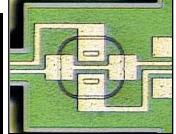
- Extraction of detailed specifications from ESA requirements
- High performance 1-axis accelerometer component
- Re-design of the MEMS transducer based on the already selected technology
- Re-design of the CMOS signal conditioning electronics on the already selected technology
- New packaging design

Acceleration Measurement – Capacitive principle

E Theon sensors

Fabrication Technology


MEMS Fabrication Technology:


Surface Micromachining of SOI wafers

SOI wafers Technology Perforation holes needed to ensure final release

Fixed Thickness DL with $2\mu m$ minimum feature size

X-Fab's XM-SC Technology for Capacitive MEMS inertial Sensors

Isolation trenches:

Isolate electrically parts of the accelerometer and guarantee the wafer level encapsulation

Wafer Level Encapsulation:

Built in pressure: 0.1Bar or 0.4 Bar Suppression of the thermomechanical (Brownian) noise

Redirection activity

Redirection specification set

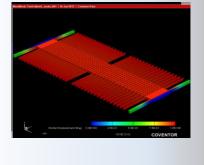
Goal: Developement of high performance 1-axis accelerometer

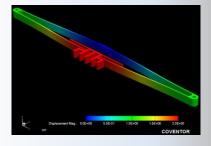
- Individual elements re-design and simulation (MEMS & ASIC)
- Simulation of device performance at the system level
- New packaging scheme
- Certain parameters acquired from measurement of the already fabricated devices
- Two distinct designs for the ±2g (ACC_2g) and the ±20g (ACC_20g) cases

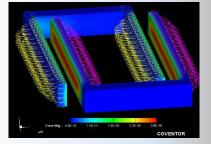
Design optimization

Individual element modeling

- Resonance Frequency
- □ Spring constant definition
- Damping Factor
- $\hfill\square$ Finger number and relative positioning


Mass


Increased mass size - reduction of electromechanical noise


Altered shape - Increase perimeter / surface ratio

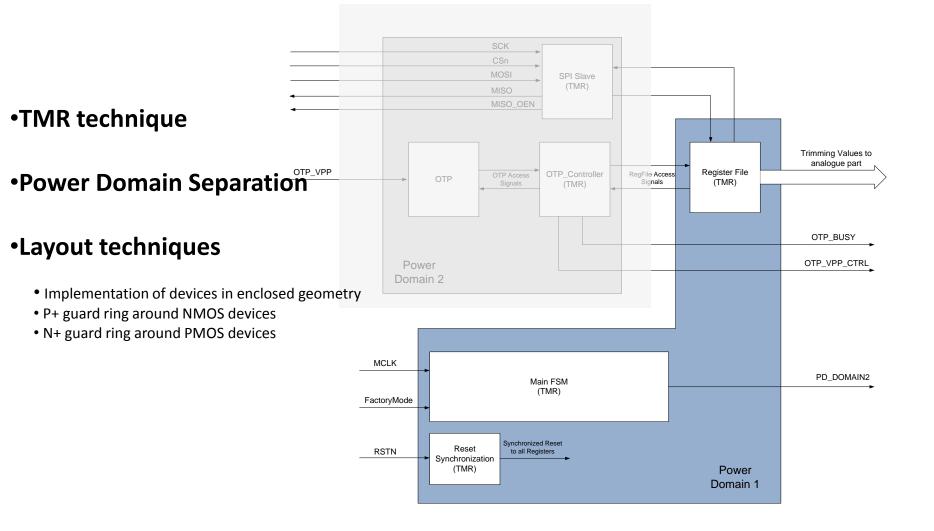
Gingers

Increased number of fingers - increased scale factor Finger relative positions - maintain high linearity Force Fingers – perform self test when in orbit

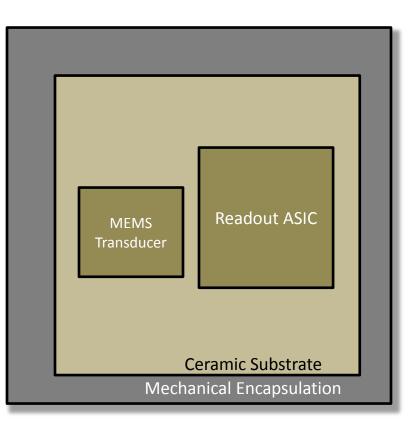
ASIC improvements

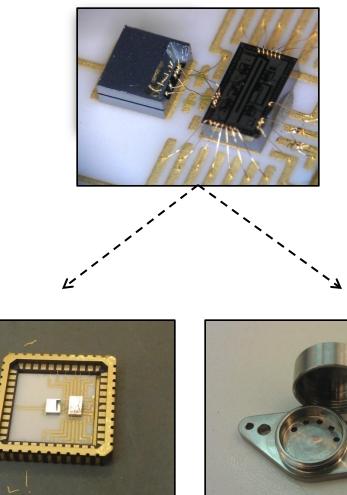
C-to-V C	Converter		_		In	strumentatio	on Amplifie	r
Specification	Existing (measured)	Improved (simulated)	Unit	Specifica	tion	Existing	Improved	Unit
Output Noise (rms BW=1 to 100Hz, no chopping)	430	166	μV			(measured)	(simulated)	% FSC
Output Noise (rms BW=1 to 100Hz, with chopping)	106	42	μV	NL _{MA}	X	1.05	0.001	/0150

Noise reduction technique for low-frequency noise suppression


n.

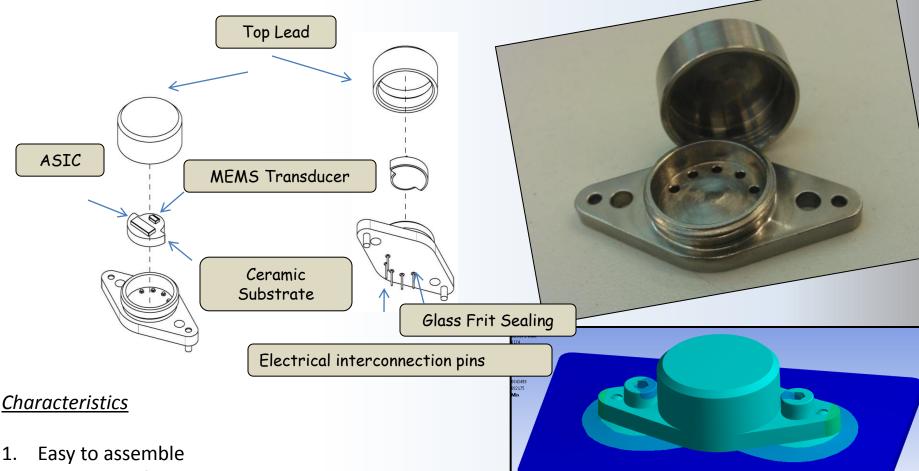
- Improved low-noise Opamp
- Digital balancing for mismatch compensation of input capacitance
- L=Digitally trimmable gain


Linearity increase



ASIC's radiation hardening

Packaging options

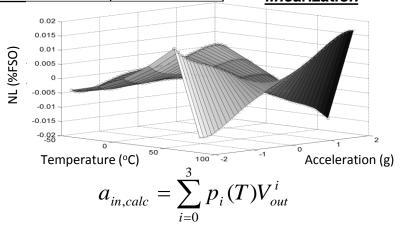

QFP Ceramic packaging

TO Metallic can package

Theon sensors

Accelerometer packaging - fabrication

- 2. Ruggedized for shock and vibration environments
- 3. Direct alignment by use of dowel pins
- 4. Vacuum encapsulation of MEMS and ASIC
- 5. Small dimensions; further minimization feasible
- 6. Minimal cost solution for low volume production


Overall System Results

	Demonstern	ACC_20g	ACC_2g	XLM11	Units
	Parameter	(simulated)	(simulated)	(measured)	
	Sense Capacitance at Rest	650	770	200	fF
1 S	Capacitance Change	120	90	30	fF
2	MEMS NL	±0.4	± 0.4	± 0.4	% FS
MEMS	Scale Factor	6.1	46.5	3	fF/g
	Resonance	4.1	2.5	3.5	kHz
	Brownian Noise	12.5	15.5	32.1	µg/√Hz
	System Resolution	16	14.2	12.1	bits
Е	System NL (Raw)	0.5	0.5	0.4	% FS
System	System NL (Compensated)	0.019	0.016	-	% FS
S	Zero-g Temperature stability	_	_	250	ppm/⁰C
	Scale Factor Temperature Stability	-	-	182	ppm/ºC

System level linearization

System Resolution:

Limited by ASIC noise (electronics noise an order larger than Brownian noise)

Summary - Roadmap

- Based on previous experience, a redesign of existing devices in order to meet demanding requirements was conducted.
- The simulation results revealed that the majority of the requirements were fullfilled.
- Continue the evaluation of the fabricated MEMS transducers, CMOS ASIC's and packaged components
- Fabrication of ACC_2g & ACC_20g transducers on Q1 2013
- Development of a radiation hardened CMOS ASIC for signal conditioning of capacitive sensors based on 0.18um XFAB

G. Fikos R. Triantafyllopoulou G. Glykiotis G. Metaxas V. Grammatikakis E. Zervakis

S. Airey

Thank you!

Tasos Petropoulos email: petropoulos@theon.com