A GaAs/GaN Supply Chain for European Non-Dependence - A Challenge -

Klaus Beilenhoff United Monolithic Semiconductors GmbH

UMS at a Glance

- Founded in 1996 by gathering THALES and EADS MMICs activities
- Offering MMIC solutions and foundry services for dedicated RF markets
- 58.7 M€ turnover (2012)
- 310 people

miconductors

- HQ, sales & marketing, product design, back-end production in Villebon
- GaAs and GaN front-end wafer production in Ulm
- Design & customer support in Lowell (USA)
- Sales Office in Shanghai
- ISO 9001, 14001 & TS 16949 certified

Main 'niche' Market Segments addressed by UMS

Volume vs. Strategic Markets

• Wafer production status:

- Q1/2013 (snapshot)
- dominated by automotive production (success of ADAS = Advanced Driver Assistance Systems)
- 86% volume markets (automotive & telecom)
- 11% foundry
- 3% for strategic markets (!!!)
- Iow demand for strategic market
 - space as always, no surprise
 - defence lack of bigger system procurement projects

• Volume important:

monolithic

semiconductors

- to reduce cost (coverage of CAPEX)
- to stabalise technologies (increasing yield and product quality!)

UMS Technology Portfolio

Research & Development

Industrialization and Qualification

Production

(in EPPL)

Ref: ESCCON2013

Space Evaluation

UMS Technology Roadmap		m						
		BCE					Space Evaluated / EPPL	
			2011	2012	2013	2014	2015	
Low Noise								
Pseudo. HEMT PH2	25	х						_
Pseudo. HEMT PH'	15	х						
Pseudo. HEMT PH'	10	x						
Power]
Power PHEMT PPI	H25	х						
Power PHEMT PPI	H25X	x			2013: Improv	ements in gair	n and linearity	
Power PHEMT PPI	H15	x						
Power PHEMT PPI	H15X	x			2013: Improv	ements in gair	n and linearity	
Power HBT HB:	205							
Power HBT HB:	20P							
Power HBT HB:	20PX							
GaN]
GaN HEMT GH	50				4" in 2013			
GaN HEMT GH	25 (4'')						_	
Other functions						🛛 🔍 va	rious (technologies for
MESFET HPO	07	(X)					kinde	of applications
VCO/digital HBT HB2	20M	х					MIIU3	
Mixer / Schottky BE	s	x				🛛 🗕 ne	arly al	I technologies
Passive Process ULF	RC	x				are	e spac	e evaluated

GaAs/GaN Supply Chain

• Supply Chain includes

- substrate (GaAs/SiC)
- epi-wafer (epitaxial growth of heterostructures on substrate)

EPITAXY

- device and MMIC manufacturing (lateral structuring and processing of epi-layers)
- back-end activities (device/MMIC test, inspection, dicing)
- packaging/assembly (mounting of device/MMIC in package/module

SUBSTRATES

MMIC

INTEGRATION

GaAs/GaN Supply Chain Requirements

• GaAs/GaN RF device/MMIC supply for European Non-Dependence

- develop state-of-art technologies (GaAs PHEMT, Schottky, MESFET, HBT and GaN HEMT) for a wide range of applications
- ensure highest performance and quality in production
- minimize/avoid US and other critical materials in the supply chain (including tools, raw materials, chemicals)
- become strategic supplier for European defence and space stakeholders
- get support from defence and space stakeholders for developments/improvements (industry, ESA, national space agencies, MoDs, ...)

volume requirement for space and defence in Europe: around 1.000x 4"-GaAs/GaN RF wafers per year

GaAs/GaN device/MMIC supply to other markets (telecom/automotive)

- concentrate on specific technologies/products and optimize cost
- increase wafer diameter (to reduce cost per component)
- strive for cost reduction in supply chain (substrate/epi-wafer)
- minimize R&D and technology changes (including supplies)

GaN Component Supply Chain

• Supply Chain versus Wafer Volume

■ high cost of new supplier qualification → limitation to low number of suppliers
■ high CAPEX per supply chain step → one supplier needs various customers

GaN Component Supply Chain

• SiC substrates

- monthly volume around 10k wafers (4" equivalent) today
- 2/3 of volume for lighting, 1/3 for power electronics (e.g. AC/DC converters)
- only 400 substrates on semi-insulating SiC (needed for RF circuitry)
- Commercial European suppliers: SiCrystal, Norstel, ... (all in development)
- →semi-insulating SiC is a "niche"

Epi-wafers on SiC substrates

- big world wide players: CREE, IQE US, ...
- strong European research base (R&D institutes)
- Commercial European suppliers: IQE UK, EpiGaN, Soitec, ... (all in development)

GaN wafer fab

monolithic

semiconductors

- big players: CREE, Triquint, Sumitomo,
- captive players: Raytheon, ...
- European players: UMS, ...

GaN Component Supply Chain

• Suppliers for European Non-Dependance

being competitive (performance, quality, price) on the supply chain level
broad customer base (worldwide) required in order to create sufficient volume
self sustaining business (only limited R&D support by European stakeholders)

European SiC Substrate – Results from R&D Projects

European substrate

Qualified substrate

• SiC Substrate Quality

Line widths from X-ray omega scans for samples on SiC substrates from European Source and the Qualified Source

European Epi-wafer – Results from R&D Projects

Epi-wafer quality

Iow spread required for production to ensure constant device performance

volume required to reduce spread

difficult for new suppliers since they have compete with well established production lines

R_sheet_ZAb

Wafer

"Challenges" on top...

• EU Legislation: CLP Classification, REACH, ...

CLP Classification and a potential entry onto SVHC list of GaAs material will be detrimental for Europe's competitiveness and ability to innovate in this market domain

Summary

- GaAs/GaN RF manufacturing requires a solid and stable supply chain from substrate, epi-wafer till wafer fabrication/processing
- Since GaAs/GaN for RF devices/MMICs are important for modern military and space applications, barrier trades are used to secure national strength/leadership → European supply chain required
- Volume wafer production required to ensure appropriate cost and quality level and to create self sustaining business
 → other markets need to be identified and successfully entered
- Defence and space stakeholders need to use and support Europe supply chain in order to allow new developments and technology improvements

