

Parts Requirements for a Global Space Equipment Market

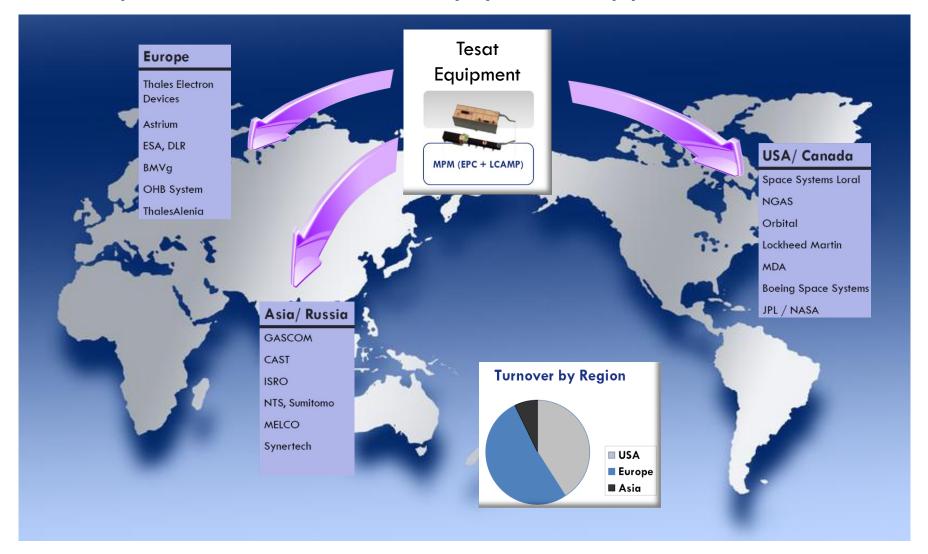
- An Equipment Manufacturer's Point of View

Contents

- Objective of the presentation
- Tesat-Spacecom as a global equipment supplier
- Requirements flow-down
- RFQs and SOCs
- US parts requirements
- European parts requirements
- Asia and ROW parts requirements
- Tesat approach to customers EEE parts requirements
- Problem Areas
- Conclusions

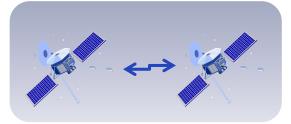
Objective of the Presentation

- To show how EEE parts requirements affect the manufacture and sale of equipment manufactured by Tesat-Spacecom and sold to customers around the world
- Give some insight into the typical requirements of our various different customers in different geographical areas
- Give examples of problem areas and how they affect our business

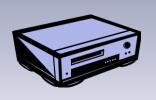

Tesat-Spacecom as a Global Equipment Supplier: Portfolio

Key Figures			
Location	Backnang, Germany		
Core Business	Spacecom Satellite Payload Equipment & Subsystems		
Employees 2012	1300		
Turnover 2012	300 Mio Euro		
Equipment Capacity	Up to 1500 Units per Year		
Programs	Up to 75 per year		
Homepage	www.tesat.de		

Tesat Company Sectors
Amplifier Products
Passive Microwave Products
Datalink Products
Laser Products
Communication Payloads
Parts Agent



Tesat-Spacecom as a Global Equipment Supplier: Globalisation



Requirements Flow-Down

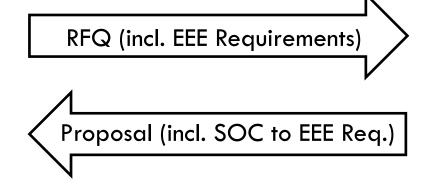
System Operator

Satellite Manufacturer

Equipment Manufacturer

EEE Parts
Manufacturer

Satellite Requirements including:
Reliability, WCA
Applicable Standards

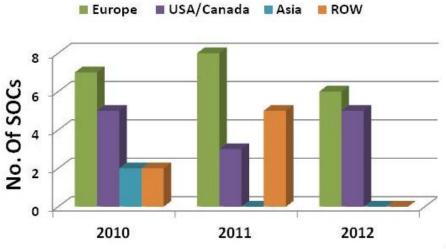

Equipment PA
Requirements including
EEE Parts and Materials

Qualification and procurement requirements for individual part types

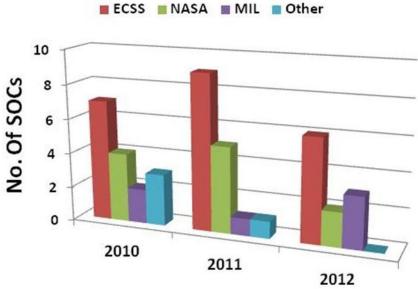
Typical RFQ Process

Satellite
Manufacturer
(e.g. Prime)

Equipment
Manufacturer
(e.g. Tesat)

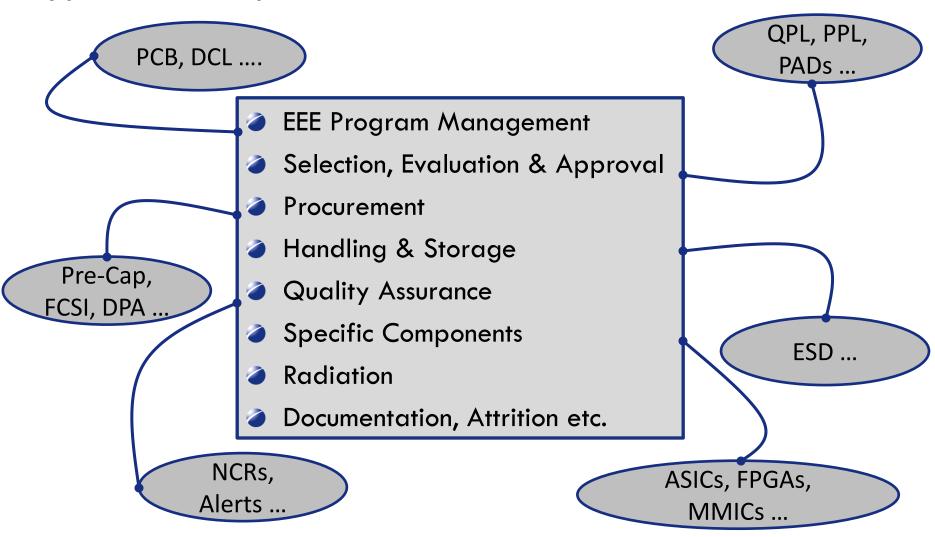

- For Tesat:
 - Several hundred proposals per year
 - SOC to EEE parts requirements usually available from previous proposals because customers use the same parts requirements documents (for Telecom Satellites, GEO and Mission Duration > 15Y)
 - Approximately 15 new SOCs to EEE parts requirements generated each year

RFQ = Request For Quotation; SOC = Statement of Conformance

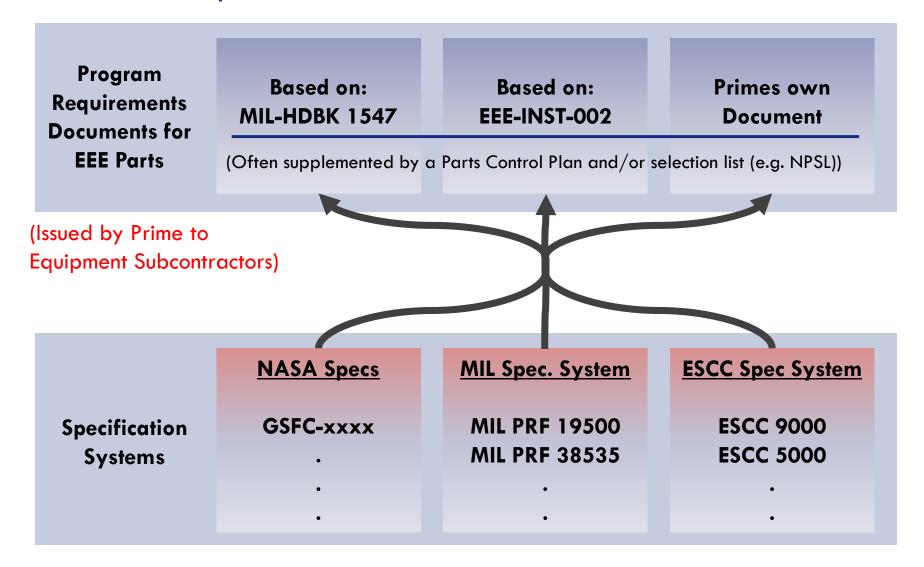


Tesat Statistics on SOCs

SOCs to EEE Parts Requirements

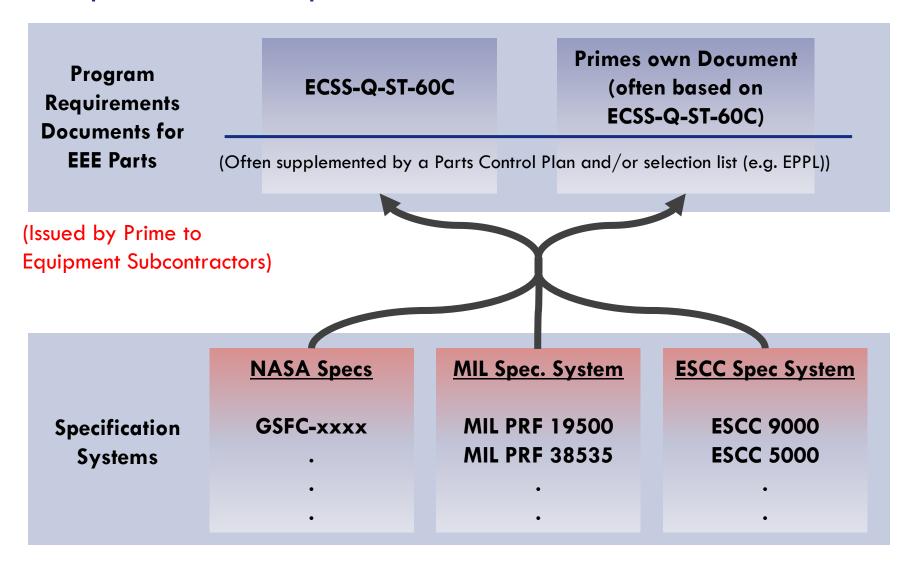


SOCs to EEE Parts Requirements



Typical EEE Requirements

US Parts Requirements Documents



US Parts Requirements Documents

Based on:	Commercial Space programs	NASA programs	Military programs Applicable	
MIL-HDBK 1547	Normally not	Normally not		
EEE-INST-002	Sometimes Applicable	Applicable	Normally not	
Primes own Document	Sometimes (often based on EEE-INST-002)	Sometimes (often based on EEE-INST-002)	Sometimes (often based on MIL-HDBK 1547)	

European Parts Requirements Documents

European Parts Requirements Documents

Based on:	Commercial Space programs	ESA programs	NSA & Military programs	
ECSS Q60	Applicable	Applicable	Applicable	
Primes own Document	Often (usually based on ECSS Q60)	Often (usually based on ECSS Q60)	Often (usually based on ECSS Q60)	

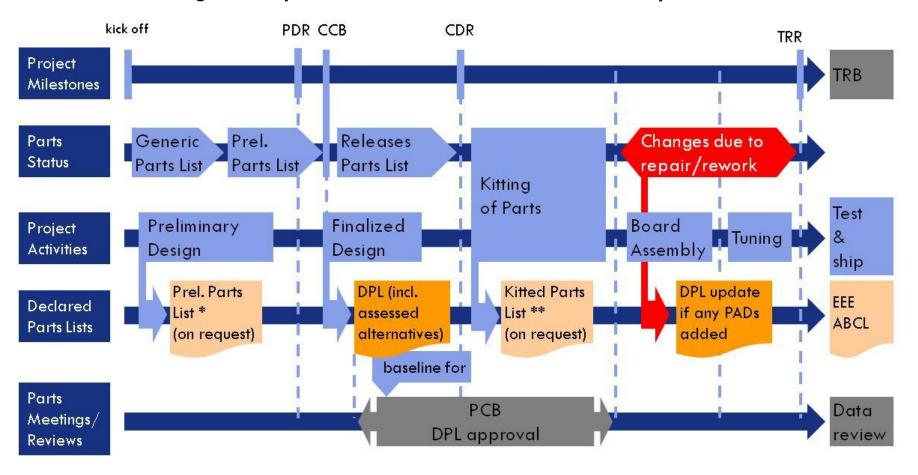
NSA = National Space Agency of a European Country (e.g. DLR,CNES...)

Asia & ROW Parts Requirements

- Many Asian and ROW countries adopt the systems applied in the US and Europe and embed them in their own EEE parts requirements
- In some cases, notably Japan, the parts selection lists are supplemented by lists of Japanese parts that have been qualified by the country's space agency
- Some customers do not require the Parts Control Board system as usually implemented for US and European programmes
- Up to now, in all cases, self procurement of the parts for use in the equipment has been applied

Tesat Approach to Customer's EEE Parts Requirements

- General Approach:
 - Uncommitted procurement in advance
 - Procurement according to a Tesat internal standard that covers all customer requirements
 - Exchangeability of form fit function parts
 - Generic parts used for circuit design
- Advantages:
 - Meet customer project schedule
 - Design activities independent of the actually used parts
 - Procurement of form fit function equivalent parts independent of projects
 - Reduced risk of parts shortages
- Disadvantages
 - Predictability of parts t used in a project
 - Parts preferences of customers difficult to handle


A specific customer interface team takes care of:

- Tesat Quality Level
- Sales Support
- Review of customer requirements
- SOCs & DCLs
- PCBs
- EEE review meetings
- Subcontractor EEE parts

Tesat Approach to Customer's EEE Parts Requirements

Process to align EEE parts used with customers' requirements

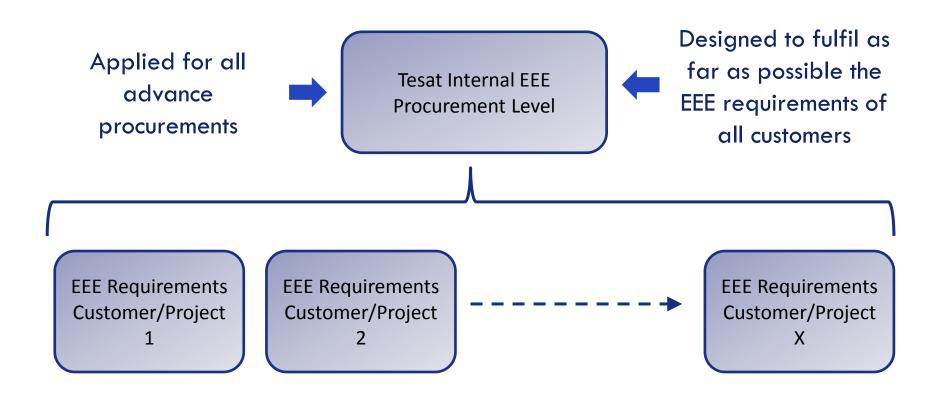
- Definition of EEE Parts
 - Different for different customers and countries
- Procurement in Advance
 - Unavoidable due to the schedule requirements in most programmes
 - Procurement according to a standard satisfying all customers requirements
- Export Restrictions
 - Equipment designs using export restricted parts and equipment designs without export restricted parts
- Values, Ranges and Sizes
 - Differences between US and European systems must be accepted by the customer
- Storage and Relifing
 - ECSS relifing standard not accepted by all US customers and programmes
- Maintenance of Supply
 - The biggest problem of all

Definition of EEE Parts

EEE Part

Equipment

Examples:


- Wires and cables
- RF passive components (eg. coax. or WG Switches)
- Substrates carrying metallic transmission line circuitry
- Magnetics
- Optical passive components (eg. glass fibre patchcords)

European definition given in ECSS-Q60

Material

Procurement in Advance

Export Restrictions

The supply of equipment to some countries, in particular China, may be prohibited if export restricted EEE parts have been used.

Export only to countries allowed by the export regulations

Unrestricted export

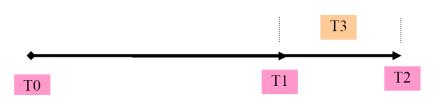
EQUIPMENT X

The difficulties are increased due to numerous changes to the classification of the parts

(e.g. $EAR99 \Rightarrow ITAR \Rightarrow EAR99$)

Design using preferred components components Design using only components without export restrictions

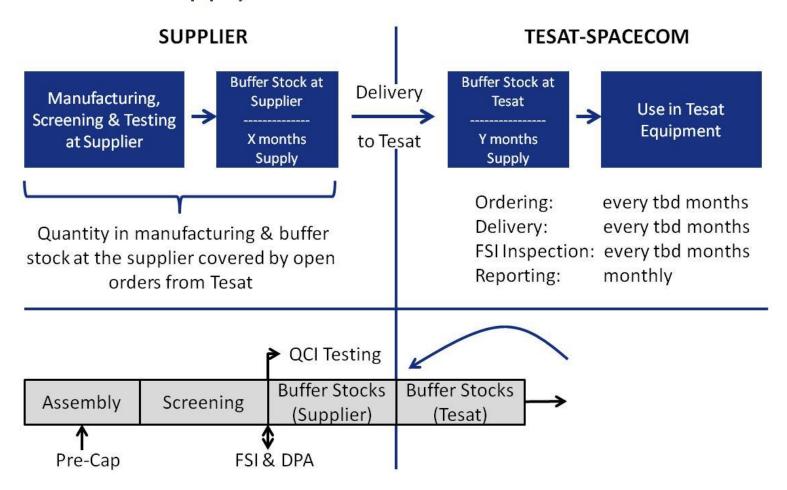
EEE Parts


Values, Ranges and Sizes

- Equipment designed using some passive part types (eg. Ceramic chip capacitors or stacked ceramic capacitors) cannot be easily modified to fulfil the requirements of the other system.
- Customers have to accept the parts selected by the equipment manufacturer
- Example: Sizes
 - European sizes based on the metric system,
 US sizes based on imperial measure (inches)
 - Examples:
 - EU CDR31.. and US CDR01.. (ceramic chip capacitors)
 - EU CH-Style and US SM-Style (stacked ceramic capacitors)

Size	MIL		MIL	Europ
	(inch)		(metric)	(metric)
	MIL-PRF	MIL-PRF	MIL-PRF -	ESCC
	-123	-55681	55681	
0603				3009/038
0805		CDR01	CDR31	3009/008
1206			CDR32	3009/023
1210	CKS52		CDR33	3009/009
1805		CDR02		
1808	CKS53	CDR03		
1812		CDR04	CDR34	3009/010
1825		CDR05		
2220				3009/011
2225	CKS54	CDR06		
2518			CDR35	

Storage and Relifing


ECSS-Q-ST-60-14C

- T0: Original date code
- T1 : Maximum allowed storage period from T0 with no relifing control
- T2 : Maximum duration between the original date code of part and its mounting
- T3: Maximum allowed storage period after a relifing control.
- Tesat carries out relifing according to ECSS-Q-ST-60-14C:
 - 7 years usable shelf-life
 - Further 3 years after relifing
- Particularly US customers regularly require deviations from the ECSS rules because they are different to the requirements defined in GSFC-EEE-INST-002:
 - Sometimes requiring shorter shelf-life (e.g. 5 years)
 - Sometimes excluding relifing
 - Sometimes different relifing test requirements

Maintenance of Supply

EEE Parts Supply Model

Conclusions

- Countries starting space activities and procuring European equipment for use in their systems and satellites mostly make use of the existing EEE standards in the US and Europe
- Differences between the US MIL system and the European ECSS/ESCC system cause some problem for equipment manufacturers selling to the global market (Eg. Sizes and values of passive components)
- Tesat's own internal procurement quality level for EEE parts for Telecom applications generally fulfils globally the customers requirements and is accepted by them