The NASA Electronic Parts and Packaging (NEPP) Program – Parts, Packaging, and Radiation Reliability Research on Electronics

Kenneth A. LaBel
ken.label@nasa.gov
301-286-9936
Co- Managers, NEPP Program
NASA/GSFC
http://nepp.nasa.gov

Michael J. Sampson
michael.j.sampson@nasa.gov
301-614-6233

Unclassified

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NE, March 12-14, 2013, and published on http://nepp.nasa.gov/.
Outline

• Overview of NEPP
 – What We Do and Who We Are
 – Flight Projects
 – Technology
 – Working With Others

• Recent Highlights

• Plans for FY13

• Challenges

• Summary
NEPP – What We Do

• **NEPP provides two prime functions for NASA**
 – Assurance infrastructure for NASA
 – Research on advanced/new electronic devices and technologies

• **We work with**
 – Active and passive semiconductors
 – Electronic device packaging
 – Radiation effects on electronics

• **We collaborate with others in technical areas such as**
 – Workmanship
 – Alert systems
 – Standards development and maintenance
 – Engineering and technology development

• **We provide an *independent* view for the safe use of electronic integrated circuits for NASA**

 Electrical overstress failure in a commercial electronic device
NEPP’s Two Functions

• **Assurance**
 – Customer: *Space systems in design and development*
 – Issues applicable to currently available technologies (aka, mature technologies)
 – Examples
 • Cracked capacitors
 • Power converter reliability
 – **NASA Electronic Parts Assurance Group (NEPAG)** - a subset of NEPP
 • Communication infrastructure
 • Audit and review support
 • Investigation into reported failures (when of potential wide-reaching impact to NASA flight projects)

• **Advanced/new electronics technology research**
 – Customer: *Space systems in early design or conceptualization*
 – Issues applicable to new technologies (or those with potential Mil/Aero applicability)
 – Examples
 • *Commercial field programmable gate arrays (FPGAs)*
 • Sub 32nm electronics
 – Technology evaluation
 – Development of test methods and qualification recommendations
NASA EEE Parts Assurance Group (NEPAG)

- Formed in 2000
- Weekly Telecons
 - Typical participation ~ 25
 - Share knowledge and experience
 - Address failures, requirements, test methods
 - Monthly international
- Audit support
- Coordinate specification and standards changes
NEPP and NASA Flight Projects

NEPP

- Works general device qualification standards
- Develops the knowledge-base on **HOW** to qualify a device used by flight projects
 - Test methods
 - Failure mode identification
 - User guidelines and lessons learned
- Works issues that are relevant across NASA

Flight Projects

- Work mission specific requirements
- Qualify a device to mission requirements or to a standard
 - Uses NEPP knowledge to perform qualification
- Work issues relevant to a specific project

NEPP provides products for use by flight projects
Maturity of Technology – The NEPP Model

- NASA flight project timelines are insufficient to learn how to qualify a new technology device
 - *Sufficient time may exist to qualify a device, but not to determine HOW to qualify*
- For 2016 launch, technology freeze dates are typically 2013 or earlier
- Technology development and evaluation programs need to be in place prior to mission design
 - NEPP’s strategic advanced planning on technology evaluation is critical to allow timely and safe flight project insertion of new technologies
Sample NEPP Technology Challenges

Key Question: Can we “qualify” without high cost and schedule?

<table>
<thead>
<tr>
<th>Silicon</th>
<th>Device Architectures</th>
<th>Packages</th>
<th>Passives</th>
<th>Board Material</th>
<th>Design Flows/Tools</th>
<th>Workmanship</th>
</tr>
</thead>
<tbody>
<tr>
<td><32 nm CMOS</td>
<td>- system on a chip</td>
<td>- inspection</td>
<td>- embedded</td>
<td>- thermal coefficients</td>
<td>- programming algorithms, application</td>
<td>- inspection, lead free</td>
</tr>
<tr>
<td>new materials such as CNT</td>
<td>- interconnects</td>
<td>- lead free</td>
<td>- higher performance</td>
<td>- material interfaces</td>
<td>- design rules, tools, simulation, layout</td>
<td>- stacking, double-sided</td>
</tr>
<tr>
<td>FINFETs</td>
<td>- power distribution</td>
<td>- failure analysis</td>
<td>- BME capacitors</td>
<td>- hard/soft IP instantiation</td>
<td>- high frequencies</td>
<td>- signal integrity</td>
</tr>
<tr>
<td>3D ICs</td>
<td>- high frequencies</td>
<td>- stacking</td>
<td></td>
<td></td>
<td>- application specific results</td>
<td></td>
</tr>
</tbody>
</table>

Related areas (non-NEPP)

- higher-speed, lower noise
- inspection
- lead free
- ruggedized, electro-optic
- stacking
- embedded
- higher performance
- BME capacitors
- thermal coefficients
- material interfaces
- programming algorithms, application
- design rules, tools, simulation, layout
- hard/soft IP instantiation
- inspection, lead free
- stacking, double-sided
- signal integrity
Sharing NEPP Knowledge

• NEPP success is based on providing appropriate guidance to NASA flight projects
 – Interaction with the aerospace community, other government agencies, universities, and flight projects is critical.

• NEPP utilizes
 – NEPP Website: http://nepp.nasa.gov
 – Standards working groups
 – Telecons (NEPAG weekly and monthly international)
 – Documents such as Guidelines, Lessons Learned, Bodies of Knowledge (BOKs)
Consortia and Working Groups

- NEPP realizes the need to work in teams to provide better and more cost-effective solutions
- NEPP utilizes working groups for information exchange and product development
 - External examples:
 - JEDEC commercial electronics and TechAmerica G11/12 Government Users
 - Internal (NASA-only) examples:
 - DC-DC converters, point-of-load convertors, GaN/SiC, and connectors
- NEPP supports university-based research when funds allow
NEPP Recent Highlights (1 of 2)

• Continued leading Qualified Manufacturer’s List (QML) MIL-PRF-38535 Class Y development

• Released documents:
 – Single event effects (SEE) Test Guideline for FPGAs

• Firsts and significant results
 – 1st data on helium leak intercomparison study
 – Base metal electrode (BME) reliability data – positive results
 – Combined radiation/reliability tests of GaN devices, DDR-class and Flash memories
 – Radiation tests of
 • 28nm TriGate processor (proprietary data)
 • 32nm SOI processor (AMD)
 • IPad™ generation 4
 – Destructive SEE observed on Schottky Diodes
 – Independent SEE test of Xilinx Virtex-5QV
NEPP Recent Highlights (2 of 2)

- **3rd NEPP Electronics Technology Workshop (ETW) - June 2012**
 - 2.5 days of presentations
 - ~250 attendees including 50% via the web

- **Assurance Efforts**
 - Cracked capacitor evaluation

- **Recent test focuses (on-going)**
 - **Power devices**
 - GaN, SiC, and Si Power Device (radiation and combined effects)
 - **FPGAs**
 - Xilinx Virtex-5QV and Commercial Virtex-5 (radiation)
 - Underfill (reliability)
 - **Point-of-load (POL) Converters**
Non-hermetic IC Package, with “Space” Features (CCGA?)

Space Challenge	Some Defenses
Vacuum | Low out/off-gassing materials. Ceramics vs polymers.
Shock and vibration | Compliant/robust interconnects - wire bonds, solder balls, columns, conductive polymer
Thermal cycling | Compliant/robust interconnects, matched thermal expansion coefficients
Thermal management | Heat spreader in the lid and/or substrate, thermally conductive materials
Thousands of interconnects | Process control, planarity, solderability, substrate design
Low volume assembly | Remains a challenge
Long life | Good design, materials, parts and process control
Novel hardware | Test, test, test
Rigorous test and inspection | Testability and inspectability will always be challenges
Hermeticity Correlation Study

- MIL-STD-750, TM 1071.8 tightened the leak rate limits for transistors and diodes
 - Change successfully fixed inconsistent Internal Gas Analysis results and improved package integrity
 - Traditional helium mass spectrometers (HMS) were not capable of testing reliably to the tighter limits
 - New piece of equipment, the Cumulative Helium Leak Detector (CHLD) was added to 1071.8 – it is capable
 - Most manufacturers are using Krypton 85 (Kr85) radioactive tracer gas method
 - Optical Leak Testing (OLT) is also allowed for TM 1078.1
 - No correlation study for Kr85, CHLD or OLT
 - HMS to Kr85 study done ~ 40 years ago

- Space users want to tighten MIL-STD-883, TM 1014 but manufacturers opposed
 - NASA has HMS, CHLD (2) and Kr85 and has been doing a “round robin” comparison to support our case
 - OLT equipment manufacturer is participating
Base Metal Electrode (BME) Ceramic Capacitor Overview

- BMEs are commercial not all can be qualified for hi-rel applications.
- Requirements used for making high-reliability PME capacitors are not all applicable to BME capacitors. BME capacitors have more complicated structures than PME capacitors:
 - Number of dielectric layers N in a BME capacitor is extremely high;
 - Dielectric thickness d is extremely thin;
 - Grain size varies from 0.5 mm down to 0.1 mm.
- The reliability of a BME Multi-Layer Chip Capacitor (MLCC) has been found to be directly related to the microstructure parameter N (# of dielectric layers) and $\left(\frac{d}{r}\right)$ (# of stacked grains per dielectric layer).
- A reliability model utilizing the microstructure of a BME MLCC has been developed and has been applied to screen out BME capacitors with potential reliability concerns.
What Determines the Reliability of a X7R MLCC?

Microstructure Parameter \(\left(\frac{d}{r} \right) \)

- Important microstructure parameter for a single-layer capacitor:

\[
\left(\frac{d}{r} \right) = \text{Number of stacked grains per dielectric layer}
\]
BME Ceramic Capacitors with C0G Dielectric

- C0G (or NP0) type MLCCs are characterized by capacitance almost independent from temperature (TCC ≤ 30ppm from -55°C to 125°C) and frequency
- These BME C0G ceramic capacitors are made using a CaZrO3-based dielectric and Ni electrodes (K~32)
 - High and stable dielectric strength allows for thin dielectric which offsets the low K to some extent
 - Much higher volumetric efficiency than regular C0G
- Dielectric aging is negligible!
- The dielectric is non-ferroelectric and with zero VCC and no piezoelectric effect (non-ferroelectric material)
- Excellent candidate for impedance match, RF tuning, temperature compensation, and possible CPU/IC decoupling
Excellent Microstructures

- Cross-section SEM photos reveal an excellent microstructure with dense, uniform grain structure
- CaZrO3-based dielectric is highly reduction-robust (no oxygen vacancy concerns)
- Very good processing compatibility between nickel electrode and dielectric material
- These capacitors appear to be “bulletproof”
NEPP – Radiation Highlight (1)

- Total dose and dose rate evaluations were performed on an AMD state-of-the-art processor (fabrication: 32nm CMOS SOI technology from Dresden, Germany).
- U.S. ITAR criteria were used as a metric with the processor device tolerance exceeding these levels.

- Total dose results: NO processor failures observed (1, 4 and 17 Mrad(Si), respectively). 17 is NOT a typo.
 - Failures observed on peripheral devices on motherboard as low as 1.1 krad(Si)
- Dose rate: no latchup observed. Upset observed on processor above ITAR levels. Motherboard peripherals (graphics) upset at levels below ITAR.
NEPP – Radiation Highlight (2)

• Initial radiation testing of 4th generation iPad™ - a test to simulate radiation exposure for true 100% COTS systems (i.e., very limited knowledge of electronics)

• Preliminary total dose testing performed on devices in standby mode and “on” followed by a suite of “app” tests for video, audio, GPS, etc…
 • Initial failures between 2 and 8 krad(Si) on battery charging circuitry
 • Display image degrades until unusable at ~ 10 krad(Si)
 • Processor appears to be fully functional at these low TID levels

 – Proves the adage that COTS will have a wide range of radiation failure levels depending on technology and function
NEPP Task Focuses – FY13

• Goals: Develop guidelines for qualification and radiation testing
 – Class Y Qualification (non-hermetic area array)
 – Flash Memory Qualification (reliability)
 – Flash Memory Testing (radiation) – in final review
 – Solid State Recorder (radiation) – in final review
 – DDR-class Memory (reliability)

• Evaluate state-of-the-art commercial electronics (reliability, radiation)
 – Memories, FPGAs, SOC Processors
 – Xilinx Virtex-7
 – Sub-32nm CMOS
 – Ipad™
 – BME Capacitors

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
Estimated Test/Parts Costs Normalized to FY98

Bottom line:
Test costs have risen significantly, unfortunately NEPP budget hasn’t!

Cost of highest priced flight part
Cost of comprehensive radiation/reliability tests on most expensive part

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
Sample NEPP Areas – Radiation Effects

Core Areas are Bubbles; Boxes underneath are variable tasks in each core

NEPP Research Categories – Active Electronics (1 of 2)

Legend

- DoD and NASA funded
- NASA-only funded
- Unfunded in FY13

SiGe. Mixed Signal

- IBM 9hp
- SiGe Physics Modeling
- Advanced Data Conversion, Amplifiers, Drivers
 - Architectural comparison
 - Develops students at Georgia Tech

Scaled CMOS

- Commercial Devices
 - Memories – Non-volatile, volatile
 - FPGAs
 - Processors, SOCs
 - Structured ASICS
- Test Structures
 - Silicon on Insulator (SOI)
 - Ultra-low power
 - Below 32nm
 - CNTs
 - RHBD Support

Sensor Technologies

- IR
 - Visible
 - Cryo SEL
 - Others

Photonics

- Fiber Amplifiers
 - Exotic-doped Fiber components
- Wavelength Division Multiplexing
- Free space Optical interconnects
- Fiber Data Links
- Optocouplers and PM Optocouplers

Performance Tools

- 32 and 45 nm CMOS
 - SiGe
- Low proton energy
- Compact model based rate prediction

Partners at:

AFRL, Cypress, Ball

Partners include:

DoD, IBM, TI, Intel, Boeing, Aeroflex, Xilinx, Microsemi

Develops students at Vanderbilt

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
Budget Challenges for FY13

• The NEPP Program had a significant budget cut in FY13

• Reduction in efforts from FY12:
 – Areas unfunded or very limited in FY13 include
 • Photonics
 • Sensors/imagers
 • Mixed signal electronics
 • Commercial systems
 • University grants (research)
 – Fewer technology evaluations/tests
 – Commodities expertise at risk
 – Travel reduction impacts number of audits and meetings supported
Summary

• NEPP is an agency-wide program that endeavors to provide added-value to the greater aerospace community.
 – Always looking at the big picture (widest potential space use of evaluated technologies),
 – Never forgetting our partners, and,
 – Attempting to do “less with less” (rising test costs versus NEPP budget reduction).

• We invite your feedback and collaboration and invite you to visit our website (http://nepp.nasa.gov) and join us at our annual meeting in June at NASA/GSFC or via the web.

• Questions?
Backups
The NEPP Program in a Nutshell

Management

Ken LaBel - Engineering
- Radiation Effects
- Advanced Actives
- NEPP Events

Mike Sampson - Assurance
- NEPAG
- Passives
- Packaging

Core Elements

- Electronic Parts Reliability
- Radiation Effects
- Parts Assurance (NEPAG)
- Advanced Packaging
- Information Dissemination

Focus Technologies

- Extreme Environments
- Sensor Technology
- Fiber Optics
- Radio Frequency
- Power Devices
- Scaled CMOS
- Passives
- Interconnects
- Memories
- Embedded Technologies
- Lead-free
- Systems on a Chip (SOC)
- SiGe Mixed Signal
- Area Arrays
- Programmable Logic
- Discretes

Products/Deliverables

- Guidelines
- Specifications and Standards
- Test Methods
- Website Content
 - NASA Parts Selection List
 - Tools
 - Data
- Technical Reports
- Bodies of Knowledge
- Conference Papers

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
Qualifying Electronic Technologies
NEPP Perspective

- Electronics in space face hazards significantly beyond the terrestrial/commercial environment
- **Qualification requires repeatable and statistically significant testing over relevant environments to ensure mission success**
- NEPP provides the basis for understanding the “how to” for electronics qualification
- Is this needed for commercial devices?
 - Previous independent review/testing has repeatedly shown discrepancies between industry claims versus independent test results that impact reliable usage in space
FY12 NEPP Technology Efforts – Part 1

Radiation Hardness Assurance (RHA) and Guidelines

- Low proton energy SEE test guide – Jonathan Pellish, NASA/GSFC
- Ultra-ELDRS and ELDRS on Discretes – Dakai Chen, NASA/GSFC
- IR Array Lessons Learned – Cheryl Marshall, NASA/GSFC
- Flash Memory Qualification Guide - Doug Sheldon, JPL
- NVM Combined Radiation and Reliability Effects – Tim Oldham, Dell – NASA/GSFC
- DDR2 Combined Radiation and Reliability Effects - Ray Ladbury, NASA/GSFC
- Updated Solid State Recorder Guidelines – Ray Ladbury, NASA/GSFC
- Correlation of LASER to Heavy Ion Millibeam with FLASH Memories - Tim Oldham, Dell – NASA/GSFC
- SEE Test Planning Guide – Ken LaBel, NASA/GSFC
- Hydrogen and ELDRS – Philippe Adell, JPL

Devices

- FPGA – Commercial Virtex 5 SEE – Melanie Berg, MEI Technologies – NASA/GSFC
- FPGA - Microsemi RTAX4000DSP SEE and ProASIC TID/SEE – Melanie Berg, MEI Technologies – NASA/GSFC
- FPGA – Microsemi ProASIC Reliability – Doug Sheldon, JPL
- Class Y (non-hermetic area array packaged device qualification) and related tests (Xilinx and Aeroflex packages/devices) – Doug Sheldon, JPL
- FLASH Memory Radiation Effects – Tim Oldham, Dell – NASA/GSFC and Farohk Irom, JPL
- Alternate NVM – MRAM/FRAM Reliability – Jason Heidecker, JPL
- DDR2/3 Radiation Effects and Combined Effects – Ray Ladbury, NASA/GSFC
- DDR2/3 Reliability – Steve Guertin, JPL
- Newly Developed Si Power MOSFETs – Leif Scheick, JPL and Jean Marie Lauenstein, NASA/GSFC
- System on a Chip (SOC) Radiation Testing – Steve Guertin, JPL
- Newly Developed POLs Radiation and Reliability – Dakai Chen, NASA/GSFC and Philippe Adell, JPL
FY12 NEPP Technology Efforts – Part 2

CMOS Technology
- IBM Technology and Radiation – Jonathan Pellish, NASA/GSFC w/ IBM, SNL, and NRL
- INTEL Technology and Radiation (22nm FinFET processor – TID/Dose Rate) – Ken LaBel, NASA/GSFC w/ INTEL, NAVSEA Crane
- Lyric Semiconductor Radiation – Jonathan Pellish, NASA/GSFC
- Complex CMOS Device SEE Modeling – Vanderbilt University and Melanie Berg, NASA/GSFC
- Physics-Based Modeling for SEE - Vanderbilt University

III-V, Widebandgap, and RF
- 90nm SiGe Radiation Effects (IBM 9hp) – Georgia Tech and Paul Marshall, NASA/GSFC – Consultant
- SiC and GaN Power Device Radiation Testing – Megan Casey, NASA/GSFC and Leif Scheick, JPL
- RF Device Screening Practices (Reliability) – Mark White, JPL
- SiC and GaN Power Device NASA Working Group – Leif Scheick
- SiC and GaN Reliability Testing – Richard Patterson, NASA-GRC
- Miscellaneous SiGe Device Radiation Testing – NASA/GSFC
- TBD GaAs HEXFET Radiation – NASA/GSFC:
 - We are tracking ESA research and determining applicability

CMOS Radiation Testing TBD Others: TI, ON, Cypress, STM

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
FY12 NEPP Technology Efforts – Part 3

Qualification and Packaging

- Class Y related packaging tests CCGA/PBGA, underfill, etc... – Doug Sheldon, JPL (w/many others)
- Cryogenic Connector Failure Analysis – NASA/JPL
- Body of Knowledge (BOK) documents on multiple packaging-related areas (TSV, 3D packages, X-ray and Workmanship, etc) – NASA/JPL
- BME, Tantallum, and Polymer Capacitor Reliability/Screening – NASA/GSFC
- DC-DC Converter NASA Working Group – John Pandolf, NASA/LaRC

NASA Connectors Working Group – Carlton Faller, NASA-JSC

Other

- Infrared focal plane array lessons learned – Cheryl Marshall, NASA/GSFC
- Development of SEGR Power MOSFET predictive technique – Jean Marie Lauenstein, NASA/GSFC
- SEE Failures and Results Related to DC-DC Converter Design – Robert Gigliuto, MEI Technologies – NASA/GSFC
- Point of Load NASA Working Group – Dakai Chen, NASA/GSFC
- Optoelectronic Connectors and Transceivers – Melanie Ott, NASA/GSFC
NASA Electronic Parts Assurance Group (NEPAG)

Core Areas are Bubbles; Boxes underneath are elements in each core

NEPAG Focus Areas

- Failure Investigations
 - Investigate
 - Assess NASA Impact
 - Test/Analyze
 - Corrective Action
 - Lessons Learned

- Specs and Standards
 - US MIL
 - VCS

- Audits
 - US MIL
 - Onshore
 - Offshore
 - NASA SAS Database

- Collaborations
 - National International

- Parts Support
 - NPSL
 - Technical Expertise Resource
 - Bulletins
 - Connectors

- Consortia
 - CAVE
 - CALCE

Legend
- DoD and NASA Funded
- NASA-only funded
- Overguide

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
Disclaimer:
Statistics and “Radiation Qualification”

Device Under Test (DUT)

Single Event Effect Test Matrix

<table>
<thead>
<tr>
<th>Amount</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>68</td>
<td>Modes of Operation</td>
</tr>
<tr>
<td>4</td>
<td>Test Patterns</td>
</tr>
<tr>
<td>3</td>
<td>Frequencies of Operation</td>
</tr>
<tr>
<td>3</td>
<td>Power Supply Voltages</td>
</tr>
<tr>
<td>3</td>
<td>Ions</td>
</tr>
<tr>
<td>3</td>
<td>Hours per Ion per Test Matrix Point</td>
</tr>
</tbody>
</table>

66096 Hours
2754 Days
7.54 Years

Doesn’t include temperature variations!!!

Commercial 1 Gb SDRAM
-68 operating modes
-can operate to >500 MHz
-Vdd 2.5V external, 1.25V internal

Devices/technology are more complex: testing is as well

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
High Capacitance Per Volume

<table>
<thead>
<tr>
<th>EIA Chip Size</th>
<th>0201</th>
<th>0402</th>
<th>0603</th>
<th>0805</th>
<th>1206</th>
<th>1210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Cap for BME C0G (pF, 25V)</td>
<td>100 pF</td>
<td>2,200</td>
<td>15,000</td>
<td>47,000</td>
<td>100,000</td>
<td>220,000</td>
</tr>
<tr>
<td>Max Cap per PME X7R (pF, 50V)</td>
<td>N/A</td>
<td>3,900</td>
<td>22,000</td>
<td>82,000</td>
<td>220,000</td>
<td>390,000</td>
</tr>
</tbody>
</table>

- Chart compares capacitance between commercially available BME C0G at 25V and PME X7R at 50V
- The PME data are from GSFC Document S-311-P-829C (1/2010) which allows the use of PME capacitors with small chip size and lower rated voltage. However, 50% voltage de-rating is still applicable.
- The BME C0G MLCCs can reach >50% capacitance that a same chip size PME X7R can provide (after de-rating)
Excellent Reliability Performance

- A 4000-hour life test did not reveal any failures
- Insulating resistance was more than 10 times greater than MIL-PRF-123 requirement, both at 25°C and at 125°C
- No dielectric wearout failures were generated when the capacitors were tested under accelerated stress conditions as high as 175°C and 500V for a group of 50 C0G BME capacitors
- DC breakdown voltage is at least 20 times greater than the rated voltage

To be presented by Kenneth A. LaBel and Michael J. Sampson at 16602-13 - European Space Components Conference ESCCON 2013, Noordwijk, NL, March 12-14, 2013, and published on http://nepp.nasa.gov/.
Summary

This low-cost, commercially available BME capacitor with a CaZrO$_3$-based C0G dielectric is one of a few existing commercial products that can significantly exceed the NASA requirements for high-reliability space applications and that can be directly recommended for use in NASA flight projects!