EEE Parts Program Update

Presentation to the European Space Component Conference

Prepared by

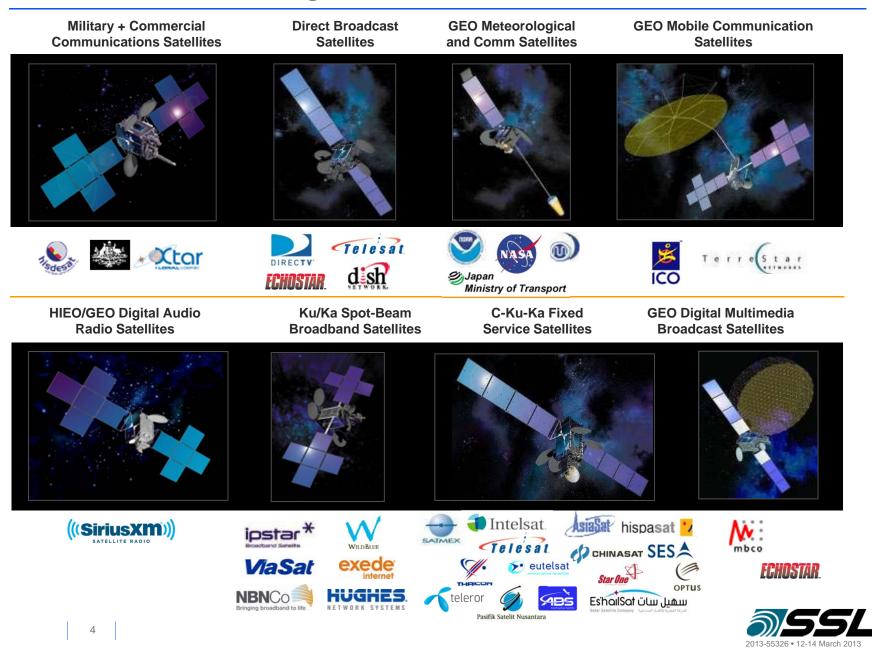
Dr. James Loman Manager, Design Reliability Department

Space Systems/Loral, LLC 3825 Fabian Way Palo Alto, CA 94303.4604 USA

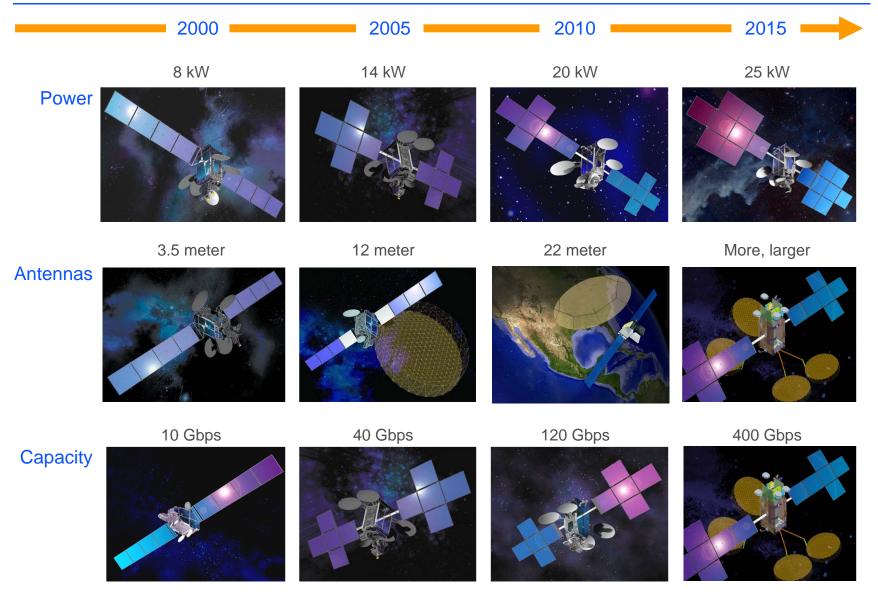
Outline

- Commercial Satellite Industry Overview
- EEE Parts Engineering Role
- Proactive Measures "Over and Above" the Requirements
- On Orbit Results

Commercial Satellite Industry Overview



Commercial Geostationary Satellite Marketplace


- The commercial geostationary satellite industry is a mature international industry with over 30 satellite operators and 6 major satellite manufacturers
- There are over 300 commercial satellites in orbit today
- ♦ 20 to 25 awards are made per year
 - > 12 to 16 are replacements
- A unique combination of technical strategies and business practices has enabled the industry to simultaneously offer
 - > Customizable design building blocks
 - > Incremental, evolutionary insertion of new technology
 - Exceptional long-term product performance and reliability up to 18 year life requirement on orbit
 - > Short delivery schedules nominally 24 to 36 months
 - > Lower program cost than equivalent government procurements

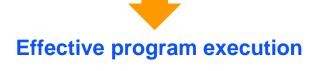
Commercial Satellite Categories and Characteristics

Commercial Satellite Capabilities Have Grown Dramatically

5

Timely, Best Value Options are Key For A Customer's Business

- Industry drive is to lower CAPEX (cost for capacity) solutions
- High quality and reliability is the absolute prerequisite to selling satellites driven by the high cost to launch
- Schedule assurance is important
 - > A high degree of standardization in a factory environment is key
 - > Requirements are firm at program start. Changes are rare and unsought
- Continuously inserting new technology that offers greater communications capability and flexibility is necessary in order to remain competitive
 - > Qualification on new technology is done on IR&D before program start
 - > Customers typically want proven technologies
 - Will accept some technical/schedule risk for a better business solution
 - > Technology approach must be anticipate variations in customer requirements
 - > The result: incremental but steady introduction of new technology


Commercial Programs are Process Driven at SSL

- Program execution is controlled by an extensive set of standard processes, design guidelines and work instructions
 - > Validated and refined over many on-orbit programs
 - > Current version maintained on internal web site (accessible to customers)
 - > Includes Mission Assurance plan enveloping requirements from all customers
- Most commercial processes evolved from MIL-STDs and have been strengthened and tailored to support our specific products — continuously updated
- Standard processes exist for scheduling, planning, and execution

Standardized operations and process stability across programs

Allows focus on program specific differences

EEE Parts Engineering Role

SSL EEE Parts Mission Statement and Organization

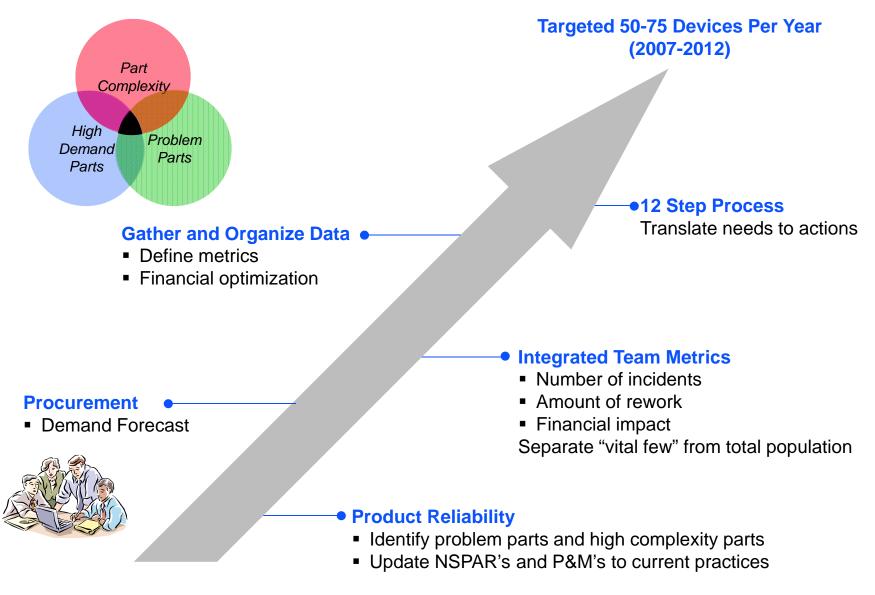
- Reliability Mission Statement: Ensure On-time Deliveries with 100% Mission Success
- Organization: EEE Parts / Reliability Department / Engineering, Manufacturing and Test
 - > EEE Parts Engineering including Parts Specialists
 - > Relays, Magnetics
 - > Switches, Thermistors, Pyro Initiators, Shunts, Fuses, Heaters
 - > Microcircuits, Hybrids
 - > Crystals, Oscillators, RF Diodes, RF Transistors
 - > Hybrids
 - > Connectors, Filters, RF Passives, Cables
 - > Resistors, Capacitors
 - > Diodes, Transistors

SSL Parts Requirements — Standard Parts Are Preferred

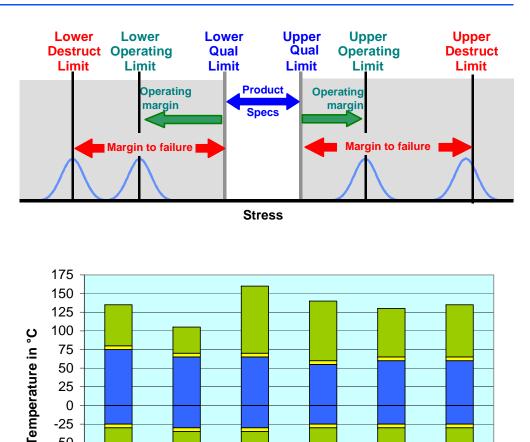
- Standard parts include
 - > MIL-PRF-38535 level-V microcircuits
 - > MIL-PRF-38534 class-K hybrids
 - > JANS semiconductors
 - > Established reliability passive devices (R/S; and "T" grade when available)
 - Space quality ESA parts (e.g., ESCC 5010/Level B microwave semiconductors, 3001/Level C ceramic capacitors)
- Parts that are not "MIL" are selected, qualified and screened in the same manner to nearest MIL-Standard to an equivalent Parts and Material Specification
- An inventory of parts required to construct all recurring satellite units is maintained. Parts may be drawn from lots used on previous programs
 - > Most programs have the same requirements the parts are interchangeable
- New parts are sometimes required due to part obsolescence or new applications
 - > These parts are selected to fulfill the requirements of space
 - Highest reliability
 - Radiation tolerance and single event effect resistance
 - Euro customers are "age" conscious
- Subcontractor parts are analyzed to the same standards

Example of SSL Standard Processes for EEE Parts

- EEE Parts Program Standard Requirements
 - > SSL Mission Assurance Plan (MAP)
 - > SSL Subcontractor Mission Assurance Requirements (SMAR)
- Customer specific requirements reflected in addendum
 - > For example, European Program SMAR Addendum
- Process for adding parts Request for Engineering Services
- Process for working with vendors on exceptions Request for Action
- ◆ Address new parts and customer unique requirements Parts Control Board
- Control of parts vendors and subcontractors Audit Documents
- SSL maintains 36 total "Parts Engineering Instructions" for such activities



Proactive Measures — "Over and Above" the Requirements


12 Step Process for Top 50 Parts — Ensures SSL Gets the Best Parts

SSL Highly Accelerated Life Test (HALT)

- SSL goes beyond Mil-Standards for new hardware
- Highly-Accelerated Life Testing (HALT) determines product performance margin
- Simultaneous mechanical and thermal stress beyond operating levels reveals weak aspects of the design
- Analysis of failures may point to straightforward product upgrades that can enhance robustness
- SSL has successfully used this on new hardware designs to confirm and/or significantly increase margin to failure

Battery Control

Spec Level Contract Qual Margin

Discharger

-25 -50 -75 -100 -125

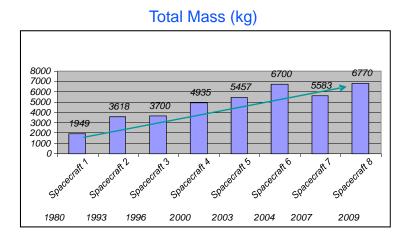
Battery Switch

Charger

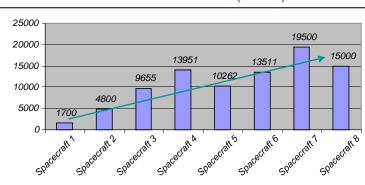
Low Voltage Sequential Shunt

Margin Demonstrated

On-Orbit Results


Results — SSL Anomalies are Declining Despite Higher Complexity

 Due to robust processes, commercial spacecraft show strongly declining anomaly rates in spite of increasing complexity, power, and capacity

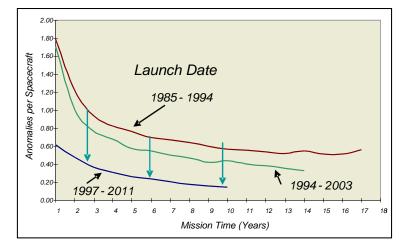

1980

1993

1996

- Spacecraft mass has tripled
- Spacecraft power has increased tenfold
- Additional and upgraded subsystems
- Significant increase in payload complexity and equipment count
- ◆ 50000 EEE parts per spacecraft
- Yet, failures per spacecraft have been reduced by more than 50%

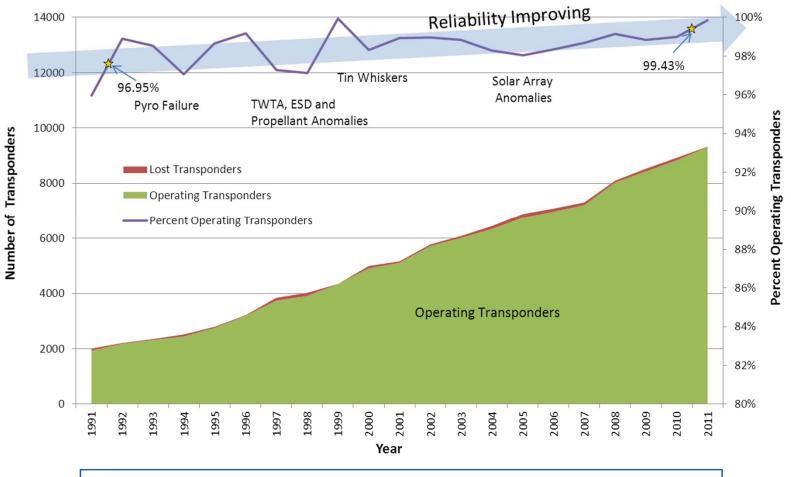
2000


Power End-of-Life (Watts)

Anomalies per Spacecraft per Year

2003

2004


2007

2009

SSL On-Orbit Reliability Continues to Improve

With nearly five times the number of transponders on-orbit, failures have been reduced from 3% to 0.5% over the last 20 years

Summary

- The commercial satellite business drives technology improvements that
 - > Incrementally increases on-orbit performance at low risk
 - > Reduces cost for capability provided
 - > Maintains short, assured schedules
- SSL has developed various processes that are paying off in
 - > Reduced parts anomalies per satellite by 50%
 - > Driving up on-orbit spacecraft reliability
 - Greatly improving the anomaly rate while significantly increasing satellite size and complexity

Rigorous use of the highest quality available EEE parts supports the commercial space business strategy

