

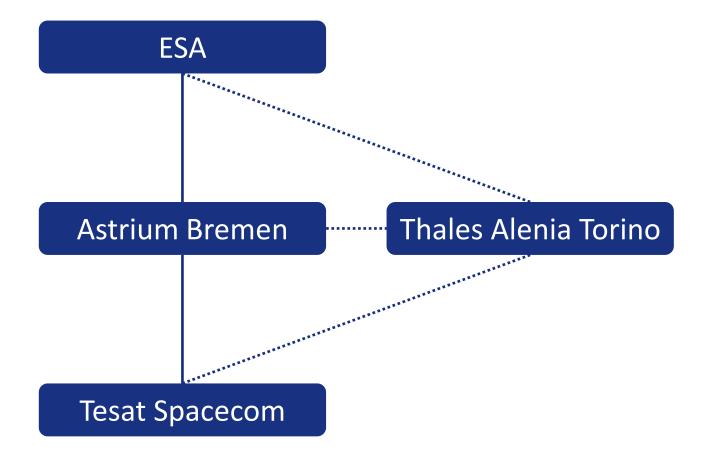
Obsolescence Management for ESA Human Spaceflight Programmes

Content

- Motivation and Scope
- Organsiation and Tasks
- Implementation
- Results
- Summary and Recommendations

(1) Motivation and Scope of Activity

- Obsolescence of EEE parts is a risk for any space programme with electronic equipment
- Obsolescence of even only a single component may require extensive redesign
- For complex systems with numerous equipment the risk is increasing more than proportional to the complexity
- This risk is increasing rapidly over time by 2 factors:
 - Duration from design of equipment to actual manufacture
 - Long mission times including repeated build of identical equipment (for multiple flight sets or replacement purpose)



(1) Motivation and Scope of Activity

- The Obsolescence Management Activity for ESA Human Spaceflight comprises all elements provided by ESA to the ISS, e.g. Columbus Lab, Microgravity Science Glovebox, etc.
- Aim is to assure capability to rebuild equipment as long as the ISS is operational
- In total there are
 - 20 programmes
 - > 400 equipment and lower level assemblies, with
 - > 12.000 part types (25.000 line items)

(2) Organisation and Tasks

(2) Organisation and Tasks

Parts lists data logging

- At start
- For updated or additional parts lists

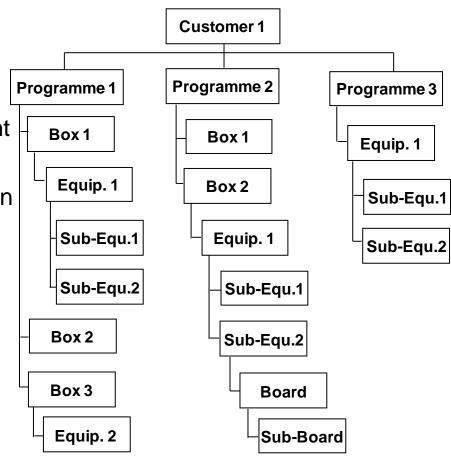
Obsolescence data collection

- Continuous monitoring of all information sources
- Periodic active query

Tasks

Assessment:

- Affected equipment
- Mitigation actions


Procurement of parts

- As agreed

(3) Implementation - Database

- Data base tool created by Tesat
- Reflects hierarchy of system + equipment
- Controlled and secure access
- Within each level all EEE parts are shown
- Assessments of obsolescence status possible on any level
- Used for ESA Manned Spaceflight since 2003
- Since then continuous monitoring

(3) Implementation – Obsolescence Categories

No.	Category	Criticality	Description
1	Obsolete	High	Part can no longer be obtained
2	Obsolescence notified	High	Discontinuation of the production has been notified
3	Manufacturer pulls out of business	HIM	The manufacturer has decided to pull out of the space parts business, has closed down or gone bankrupt.
4	Alert issued	Medium	An alert regarding the part type has been issued
5	Production problems	I IVIDAIIIM	The manufacture cannot fabricate the part because of manufacturing problems or insufficient capacity
6	Technical problems with the part	I IVIENII IM	Technical problems have been identified at the users, at procurement agencies or in other programmes.
7	Major technical changes	ı ivledium	The part is still available but has undergone major technical changes
8	Other	ı ıvıeaium	Any other event that may restrict the availability of the part type.
9	None	None	No restrictions / former restrictions are no more relevant

(3) Implementation - Process

Log Parts Lists

Register and categorise obsolecence issues (per part)

continuous process

Perform Assessment (per equipment or programme)

Obsolescence status for a specific part

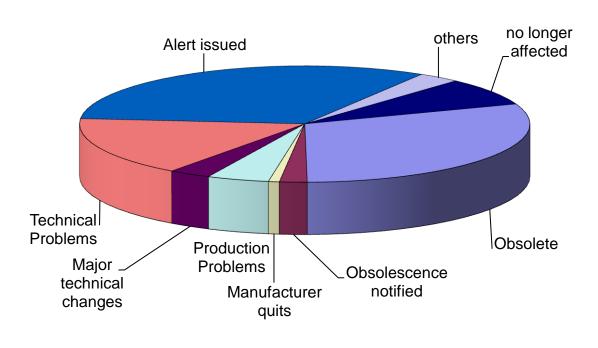
Actual risk for a equipment or programme

(3) Implementation – Parts Level

Example for data on parts level

Components in D	atabase					1 - 25 (of 25 mat	ching records
<u>Risk</u> Status	<u>Idnr</u>	<u>Style</u>	<u>Value</u>	Part Designation	Characteristic		Manuf.Cod
•	M 12 05929	2N2222	Switching transistor	SOC2N2222AHRB	Switching transi SCC-B	stor NPN, Chip, QL :	STM F
 Obsolete 	M 12 06000	2N2222A	NPN Transistor	JANTXV2N2222A	Transistor, Low TO-18, QL : []	Power NPN, Case:	STM F
•	M 12 07222	2N2222A	NPN Power	JANTXV2N2222A	Transistor; Low 50V/500mW	Power NPN	NES U
Parameters of se	lected part type						
Style Part designation			signation		IdNr		
2N2222A JANTXV2			2N2222A			M_12_06000	
Family Group					Package		
Transistor			Low Power NPN			TO-18	
Value Description Manufacturer			cturer		MatGroup		
NPN Transistor		ST Micro	ST Microelectronics, France				
Description				Specifications			
Transistor, Low Po	ower NPN, Case: TO	-18, QL : JAN	πхν	Type Spec.No. AN DN MIL-PRF-19 GN MIL-PRF-19		ss. Spec.Rev. Spe	c.Status
	Identify Progra	immes and E Search	quipment		7/02/20	nce Management	

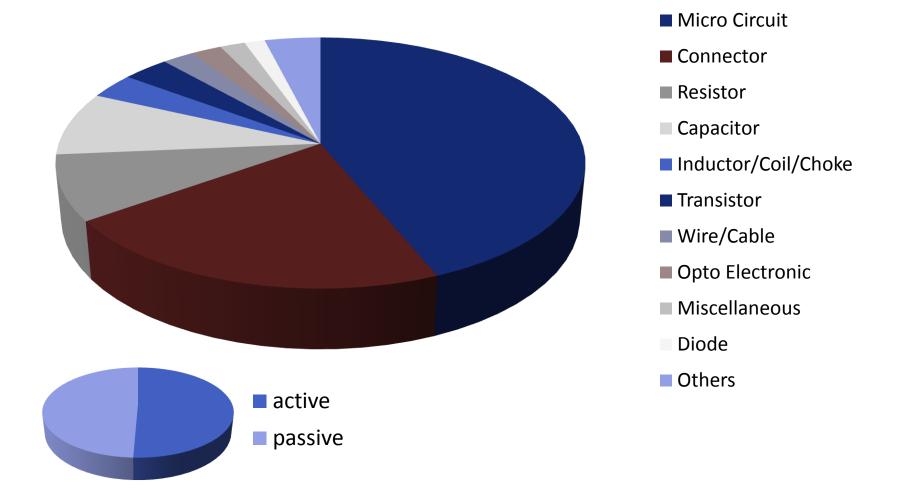
(3) Implementation – Equipment Level


Example for database output on equipment level

<u>isk</u>	≜ ↓ Equipment Code	<u>Description</u>	Parent Equipment	User	User Qty of Equ
•	AAA	Avionics Air Assembly	ВІО	BRA	1
•	<u>AI</u>	Analyse Instruments	віо	CGS	1
•	<u>ANABO</u>	Analog Board	WVS	ERE	1
•	ATCS	Active Therminal Control Subsystem	TE	NTE	2
•	<u>Basis</u>	Housing incl. Basic-Structure	RPDA	CGS	1
•	BGB	Biological Glovebox	віо	BRA	1
•	BIO	Program		AST	1
•	CCB MS	Board	MS	CGS	1
•	CCB SP	Board	SP	CGS	1
•	CE	Control Electronics	TE	NTE	4

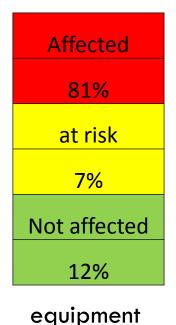
- All parts needed to manufacture this unit of equipment are available. Any obsolete parts have been procured and stocked or another recovery solution has been implemented.
- The availability of some parts needed for the manufacture of this equipment is not secure. Near obsolescence or another risk category have been identified and recovery actions have not yet been implemented.
- One or more part types needed for the manufacture of this equipment are no longer available and a recovery solution has not been implemented.

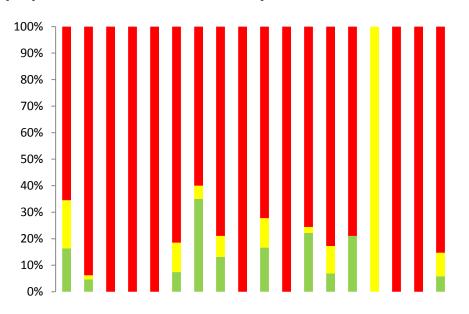
(4) Results: Assessment on Parts Level


From 12.000 parts:

Obsolescence Issue	
Obsolete	13,2%
Obsolescence notified	0,9%
Manufacturer quits	0,3%
Production Problems	1,9%
Major technical changes	1,3%
Technical Problems	7,1%
Alert issued	14,0%
others	1,3%
no longer affected	3,4%
not affected	56,5%

(4) Results – Parts Level


Obsolete Parts – by Family



(4) Results: Programme + Equipment Level

- More than 400 equipment and subassemblies considered
- The number of programmes affected by obsolescence is much higher than the actual share of obsolete parts as only one single obsolete item will affect the complete programme
- ightharpoonup More than 80% of the equipment is affected by obsolescence.

Programmes (schematic examples)

Assessement is specific to programme / equipment (example)

(5) Summary

- The activity allows to indentify obsolescence issues and risks at an early stage due to
 - Wider definition of obsolescence
 - Periodic active query of actual status
- Obsolescence of Parts is a major issue for long term programmes
- There is always a clear view on all levels of equipment integration on the grade of being affected
- Programme specific measures can be considered and tracked

(5) Recommendations

- Start of Activity: should start as early as possible in a programme, ideally after finalisation of parts lists
- Quality of parts lists: Should contain complete details of the parts to allow clear identification
- Periodicity of manufacturer queries
 Compromise needed for maximum feedback
- Detail versus efficiency: Keep data base lean by using generic part style rather than all exact values where possible (especially for passive components)

For further information please contact:

Dr. Martin Veith

Tesat-Spacecom GmbH Co. KG

Gerberstraße 49 71522 Backnang

martin.veith@tesat.de