

OPTOI on ESCC and ECI observations from and information on a new European space component supplier

Speaker: Mr Matteo Bregoli

ESCCON – 14th March 2013

Outline

- Optoi Microelectronics
- Devices under development
- Considerations on ESCC and ECI

Matteo Bregoli ESCCON – 14th March 2013

Optoelettronica Italia Srl

Fondazione Bruno Kessler (FBK)

Optoi new plant, Trento

- 1995 Foundation spin-off company from FBK activity and small production start-up
- 2000 Industrial projects and production, international trade mark OPTOI Microelectronics
- 2004 New production plant project and international customers Quality System Certification ISO 9001:2008
- 2005 New production plant established company headquarters moved
- 2006 First 10 years, Trentino Green Consortium Habitec, increased Optoi staff and partnership with FBK
- 2011 Evolution of Optoi Group as network of high-tech companies Innovasens: Optoi, Advansid, Eoptis

<image>

Matteo Bregoli ESCCON – 14th March 2013

Microsystem Packaging

Technology

- COB (Chip On Board)
- CSP (Chip Scale Package)
- MCM (Multi Chip Module)
- Stack 3D
- SiP (System in Package)
- SMT (Surface Mount Technology)

Materials

- Polimers: G200 Kapton Teflon FR4
- Ceramics: Alumina LTCC Glass
- Metals:

Kovar Al-clad Inox

Capability

- direct die bonding
- wire bonding
- hermetic welding
- encapsulation
- oven curing
- sensing layer printer
- substrate dicing
- microsystem dicing
- thick film deposition
- SMD assembly line
- die shear test
- wire pull up test
- functional test
- temp. & hum. test

The optoelectronic activity line: **Optoi projects funded by Space Agencies**

Optoi clean room upgrades

- Upgrade to class 1000 (ISO 6) summer 2012 investment > €100k
- New internal regulations and procedures
- New specific equipment

Metallographic microscope ESA-related purchase

 TABLE I - Classification based on number of particles allowed per cubic meter, according to three different systems (United States Federal Standard - USFS)

USFS - 209D (1988) Class	USFS - 209E	ISO 209 (1997)	Maximum number of particles / m ³	
	(1992)		0.5 to 5 µm	>5 µm
1	M1.5	3	35.3	ND^{b}
10	M2.5	4	353	ND
100	M3.5	5	3,530	ND
1,000	M4.5	6	35,300	247
10,000	M5.5	7	353,000	2,470
100,000	M6.5	8	3,350,000	24,700

^aSource: Moorfield, 2006. ^b Not defined.

Matteo Bregoli ESCCON – 14th March 2013

General impressions: effort

- Long duration of manufacturing procedures intermediate quality checks
- Raw materials are expensive need care for proper use
- Production yield is limited each reject is a loss of money and time
- Customized production tools are mandatory
- Contamination level control is demanding

A compromise between standards, reliability and sustainability needs to be reached

Developments always imply investments

Sustainability is not straighforward for a business-oriented company

Matteo Bregoli ESCCON – 14th March 2013

Optoi as a newcomer ESCC requirements

- need for guidance and support
- gathered knowledge
 radiation tests
 - ETP procedures
 - technological analyses
 - preferences for materials, technologies, suppliers

Benefits

- Quality
- Repeateability
- Control
- Methodology (PID)
- Improved traceability (Lot Travellers)
- Know-how on reliability
- Tendency to constant improvement
- Continuous training for the personnel

but

- production line has to be interrupted
- poor yield and small throughput
- results obtained after years
- small business volume

Matteo Bregoli ESCCON – 14th March 2013

Space market vs. others

 lower control needed in the manufacturing limited analysis of failure modes more unpredictability in the related market less protection of the market 	Optoi standard production
VS.	
 niche market but more international added-value devices clearer prespectives and strategies possibility to build a recognized reputation technologies can be exported to other domains 	space market pros
but	,
 slower developments subject to global conditions (procurement continuity) difficult sustainability, demanding workload 	space market cons

Matteo Bregoli ESCCON – 14th March 2013

- European companies support the rise of a new supplier
- Difficulties in getting in contact and being considered
- More responses from Northern Europe
- Technical requirements vary considerably
- Relevant interest from China and India

European strategy ??

Expectations from the end-users

- Privilege reliability and strategic vision
- Target price sensitivity for standard production
- Most of them prefer component qualification before involvement

Management of our suppliers

- Key partners need to be identified
- Long-term availability of products
- European sources first
- Some Japanese partners

Two problems:

- attract suppliers in a niche business with low volumes, only developers benefit from the added-value
- customization is not justified by big manufacturers

Optoi expectations and conclusion

- Niche and limited business
- Strong effort needed
- Increase of visibility
- Increase of respectability

Optoi main target

- successful evaluation of optocouplers and phototransistors
- concrete results expected 2013 2014

Ambition

reference European company for **space optoelectronics** photodiodes, SiPM, FBG interrogators and related sensors

Matteo Bregoli ESCCON – 14th March 2013

Thank you for your attention

Matteo Bregoli Contact email: research@optoi.com

ESCCON – 14th March 2013

Aerospace Division

Overview of the aerospace activity line

ESCC eval and qualification of an European rad tolerant optocoupler

- Ref. AO/1-6300/09/NL/EM ECI phase 2
- Project_started_in_Jan_2011

Microelectronic technologies fully automatic assembly line for devices assembled in

Assembly process flow, compliant with MIL-STD-883

Typical applications

- electrical circuits, where one section has to be isolated from another in terms of current / voltage signals (galvanic isolation)
- electrical circuits, where signal noise has to be minimized or voltage transients have to be prevented, so that there is no interference between circuit sections sharing the same circuit reference

ESCC approval of an European source of 8-ch Si phototransistors

- Ref. ITT/AO/1-6836/11/NL/RA ECI phase 3
- Project started in Nov. 2011

Microelectronic technologies fully automatic assembly line featuring wafer dicing, die bonding, wire bonding, dispensing, glass lid sealing, oven polymerization

Assembly **process flow**, compliant with *MIL-STD-883* and *ESCC Basic Spec n. 2049000* Assembly **pre-evaluation activities** for back-end qualification

Typical applications

- angular optical encoders, determining rotational speed, angular position, acceleration and number of cycles
- actuators of control moment gyros, part of motorized gimbals of last-generation satellites
- optocouplers
- optical switches

