

ESA-CNES Final Presentation Days 2013

SPACE RADIATION INDUCED DARK CURRENT DEGRADATION IN 5T PINNED PHOTODIODE 0.18µm CMOS IMAGE SENSORS

<u>E. Martin¹</u>, T. Nuns², J.P. David², O. Gilard¹, J. Vaillant³, P. Fereyre³ and V. Prevost³

¹ CNES, Toulouse, France
 ² Onera, Toulouse, France
 ³ e2v, Saint-Egrève, France

5-6 June 2013

ESA-ESTEC, Noordwijk, The Netherlands

Work co-financed by Onera and CNES R&T programme and performed under PhD framework

CONTEXT & GOALS OF THE STUDY

Context

- Radiation qualification methodology
 - » A key issue for imaging sensors selection for space applications
 - » Noticeable difference between on-ground and in-orbit dark current degradations (Penquer et al., IEEE TNS 2009)
- Previous study on SPOT 5 flight model CCDs (Martin et al., IEEE TNS 2011)
 - » Biasing condition and dose rate during ionizing irradiation have both a significant impact on the dark current degradation
 - » Using on-ground irradiation test conditions as close as possible as in-orbit has provided a better real degradation estimation, still being conservative
 - » \Rightarrow a possible way to improve on-ground test evaluation of imaging sensors

Study goals

- Main parameter of study : dark current
- Apply this methodology and investigate dose rate and biasing condition during ionizing irradiation on CMOS Image Sensors (CIS) based on 5T pinned photodiode (5T-PPD) pixels
- Get an overview of displacement damage effects on 5T-PPD CIS
- Study Dark Current Random Telegraph Signal (DC-RTS) characteristics after Co⁶⁰ and proton irradiations

DEVICE FEATURES (1/2)

CMOS Image Sensors (CIS) based on pinned photodiode (PPD) pixel reach very high performances in terms of dark current and readout noise \Rightarrow serious candidates for space applications

5T-PPD CIS features

- 5T-PPD COTS device (EV76C454) from e2v (UK)
- 0.18 µm CMOS foundry process
- 838×640 pixel array
- 5.8 µm pixel pitch
- Column 8-bit ADC
- Not specifically radiation hardened

 V_{DD}

Reset

Source-

Follower

DEVICE FEATURES (2/2)

Sensor operating conditions

- Global reset mode
- In-pixel antiblooming during integration (GR~100s mV)
- ◆ All dark signal measurements performed at 23℃

Particular attention to TG and GR off-voltages

- During integration
 - » TG off-state = 0 V
 - » GR off-state ~ few mV (for antiblooming)

Coes

- So the PPD depletion region extends below the gate oxides of TG and GR
- + As COTS devices, no modification of TG and GR off-state voltages is allowed

IRRADIATION PLAN

Co⁶⁰ γ-rays irradiations

- + Total Ionizing Dose (TID) : up to 32 krad(SiO₂) at room temperature
- ✤ 3 distinct dose rates
- + 3 biasing condition during irradiation

100% OFF (unbiased)								
100% ON								
ON	OFF	ON	OFF	ON	OFF			
T=ON/OFF cycle <───────────					Tim	'→ ie		

7% ON/OFF bias duty cycle is representative of SPOT5 mission inflight operation

	Biasing condition during irradiation						
Dose rate (rad/h)	Off	7% ON with a period of 50 s	7% ON with a period of 500 s	7% ON with a period of 1000 s	100% ON		
36	CIS 6	CIS 2	CIS 3	CIS 4 CIS 5	CIS 1		
200		CIS 10					
10,000	CIS 9	CIS 8			CIS 7		

Proton irradiations

- Unbiased during irradiation
- + 4 protons energies
- Displacement Damage Dose (DDD)
 - » From 212 to 1020 TeV/g

+ TID

» also up to 32 krad

Device #	Proton energy (MeV)	TID (krad(SiO ₂))	DDD (TeV/g)
CIS 11	185	10	319
		32	1020
CIS 12	120	10	264
		32	854
CIS 13	60	10	262
		32	838
CIS 14	30	10	212
		32	677

Ccnes

Co⁶⁰ γ-RAYS IRRADIATION TEST RESULTS (1/4)

Effects of Biasing during irradiation (1/2)

- Biasing effects observed from 20 krad
- Worst case degradation for 100% ON biased device
- Enhancement of degradation with the ON/OFF cycle period

Cones

 \Rightarrow 7%ON degradation is **bounded** between unbiased and 100%ON degradation

 \Rightarrow Significant effect of biasing during irradiation on this device, why ?

Co⁶⁰ γ-RAYS IRRADIATION TEST RESULTS (2/4)

Biasing effects during irradiation (2/2)

- In the 5T-PPD CIS studied, most of the time TG and GR are in off-state mode (more than 99.99% of the complete { integration + readout } time)
- + TG (off-state) = $0 V \Rightarrow$ very low electric field in TG gate oxide (= unbiased case)
- ◆ GR (off-state) ~ few mV ⇒ quite significant electric field in GR gate oxide (≠ unbiased case)

- ⇒ Effect of biasing during irradiation probably due to active interface states located at Si-SiO₂ interface in the GR surrounding area (STI or gate oxide)
- ⇒ Cause reinforced by the fact that no biasing effect is observed in 4T-PPD CIS up to 1000 krad (Goiffon *et al.*, IEEE TNS 2012)

Ccnes

Co⁶⁰ γ-RAYS IRRADIATION TEST RESULTS (3/4)

Dose rate effect

 \Rightarrow Low dose rate presents more degradation than the high dose rate for all devices

Ccnes

PROTON IRRADIATION TEST RESULTS (1/2)

Dark Signal Non-Uniformity (DSNU)

- Presence of hot pixel tail with exponential tendency
- At a given TNID, the hot pixel tail is quite similar in the deposited fluence range for all the proton energy

⇒ Mean dark current increase and the number of hot pixels both increase with the displacement damage dose (DDD)

Ccnes

9

E. Martin et al., ESA-CNES FPD, 5-6 June 2013

PROTON IRRADIATION TEST RESULTS (2/2)

Dark current (I_{obs}) activation energy (E_a)

- + E_a allows identifying the different mechanisms at the origin of dark current in the pixel
- Pixel population #1 : I_{obs} < 4000 e-/s (84% of all pixels) \Rightarrow diffusion and generation current
- <u>Pixel population #2</u>: 4000 < I_{obs} < 20000 e-/s \Rightarrow mainly generation current
- <u>Pixel population #3</u>: I_{obs} > 20000 e-/s \Rightarrow possible effect of electric field enhancement

DARK CURRENT RANDOM TELEGRAPH SIGNAL (DC-RTS) (1/4)

DC-RTS phenomenon

90

80

70

60

Dark signal (Isb)

- Pixels exhibiting RTS noise are detected using sharp edge detection method (Goiffon et al., IEEE TNS 2009)
- In 4T-PPD CIS, ionizing dose (Goiffon et al., IEEE TNS 2012) and displacement damage dose (Virmontois et al., IEEE TNS 2012) induce DC-RTS pixels
- ♦ What about DC-RTS in 5T-PPD CIS ?

60 MeV proton TID = 32 kradDDD = 838 TeV/q $Tint = 1000 \, ms$ \Rightarrow RTS behaviour comes from the PPD (not from the in-pixel

Source-

Follower

Colum

Ccnes

Video

Analog Signal

Reset

11 E. Martin et al., ESA-CNES FPD, 5-6 June 2013

DARK CURRENT RANDOM TELEGRAPH SIGNAL (DC-RTS) (3/4)

Dark current degradation of RTS pixels

12 E. Martin et al., ESA-CNES FPD, 5-6 June 2013

DARK CURRENT RANDOM TELEGRAPH SIGNAL (DC-RTS) (4/4)

CONCLUSIONS

Total ionizing dose effects

- Effects of biasing during irradiation
 - Probably due to GR off-state voltage implementing in-pixel antiblooming function
 ⇒ active interface states in GR surrounding area (STI and gate oxide)
 - Operating GR (and TG) in accumulated mode (off-state voltage <0V) could reduce or suppress the biasing effect (to be checked) as the PPD depletion region do not extend below GR and TG in this case
- Effects of dose rate
 - Probable involvement of thick oxide with weak electric field (such as the STI surrounding the PPD)

Displacement damage effects

 Presence of hot pixel tail with exponential tendency on the dark current distributions as observed in 3T-PD and 4T-PPD CIS

DC-RTS

- Hot pixels are mainly RTS pixels
- DDD induced RTS transition amplitudes are greater than TID induced ones at a given total dose

THANK YOU

emma.martin@cnes.fr

