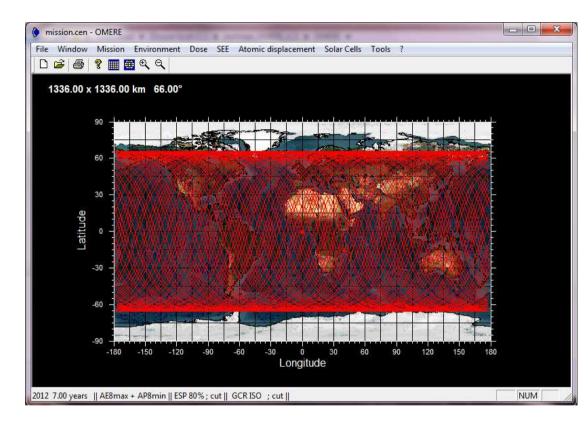


TRAD, Tests & Radiations

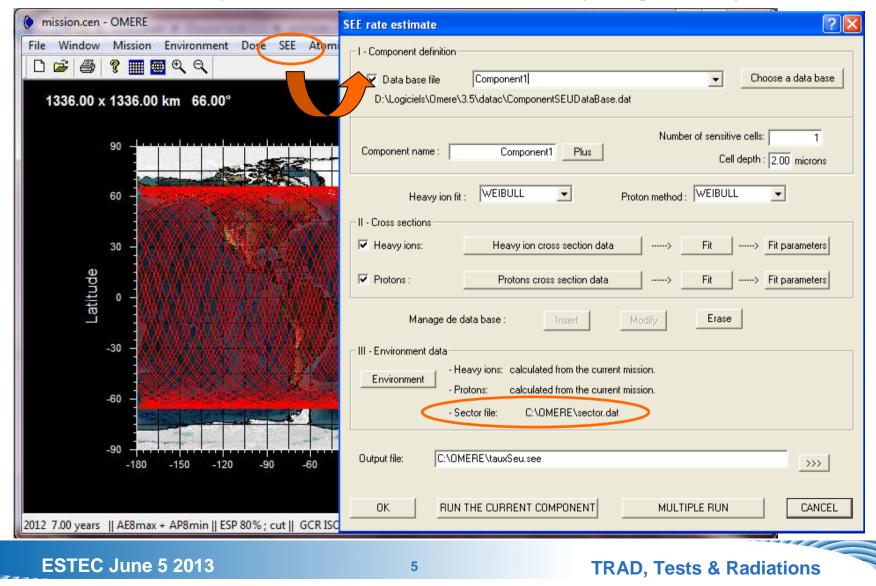
Shielding geometry effect on SEE prediction using the new OMERE release: JASON-2 mission case study

Athina VAROTSOU

- The project
- OMERE freeware
- JASON-2 radiation model
- Electronic Component data
- Results for:
 - LEO mission
 - A hypothetical GEO mission
- Conclusions


- Research and Technology study financed by the CNES.
- Goal: study the shielding effect of satellite geometry in the calculation of Single Event Effects for components aboard the JASON-2 satellite (1336 km, 66°).
- Validate new OMERE developments, cofinanced by the CNES.

OMERE freeware


Download OMERE for free at http://www.trad.fr/OMERE-Software.html

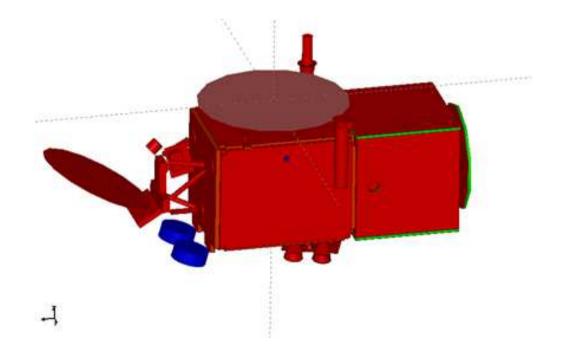
- Developed by the TRAD company with the support of CNES.
- A freeware dedicated to space environment and radiation effects on electronics.
- Strong engineering interest: an industrial, institutional and agency multi-partnership decides on the new modules to be added.

OMERE freeware

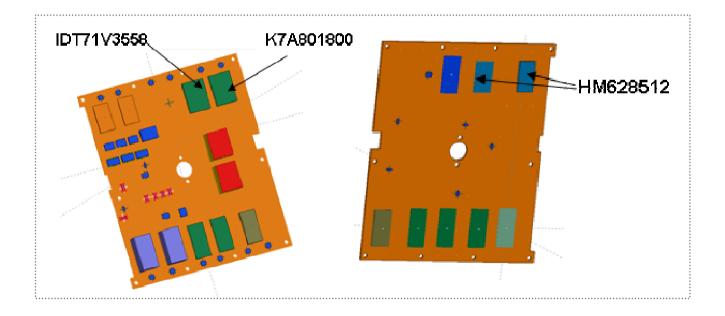
New module for SEE prediction behind a sector analysis geometry

OMERE freeware

New module for SEE prediction behind a sector analysis geometry

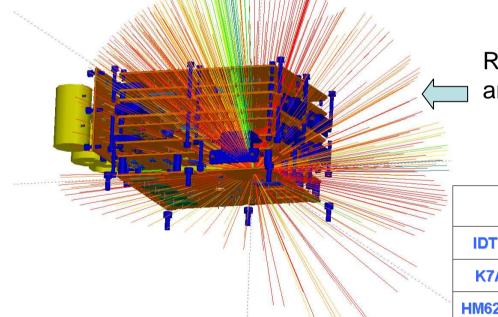

Radiation Environment data	ate ? 🗙
Form flux files	
C Environment defined by flux files	definition
F Heavy ions LET fil	ux se file Component1 Choose a data base
C:\OMERE\ions.let	Is\Dmere\3.5\datac\ComponentSEUD ataBase.dat
Protons energy Hu C:\OMERE\protons.ftx >>> MeV Y //cm² /s /Me	Number of sensitive cells: 1
From the current mission	
Environment defined by the models selected in the current mission	savy ion fit : WEIBULL Proton method : WEIBULL
Single shielding thickness : 1.000000 C mm (Aluminium)	ons x Heavy ion cross section data> Fit> Fit parameters
F Geometry from sector file: C:\OMERE\sector.dat	Protons cross section data ······> Fit ·····> Fit parameters
OK	Cancel Int data
	- Heavy ions: calculated from the current mission. - Protons: calculated from the current mission. - Sector file: C:\OMERE\sector.dat
-180 -150 -120 -90 -60 -30 0 30 Longitude 2012 7.00 years AE8max + AP8min ESP 80% ; cut GCR ISO ; cut	Output file: C:\OMERE\tauxSeu.see >>>
	OK RUN THE CURRENT COMPONENT MULTIPLE RUN CANCEL
ESTEC June 5 2013	6 TRAD, Tests & Radiations

JASON-2 radiation model


- JASON-2 : a CNES, NASA, EUMETSAT, NOAA collaboration
- Satellite developed by Thales Alenia Space

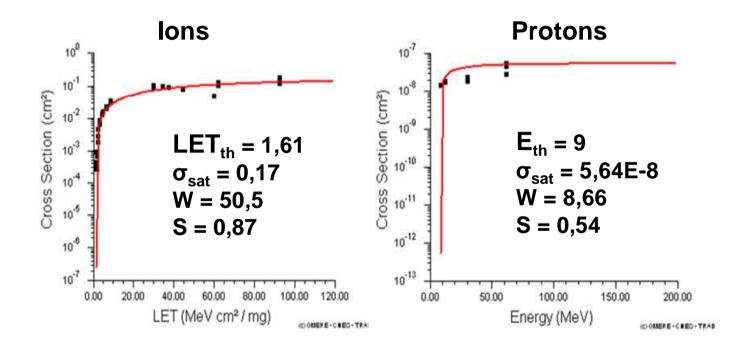
The complete satellite radiation model in FASTRAD® format was used for this study

Components are placed inside the ICARE-NG/CARMEN-2 equipment aboard JASON-2, a dedicated instrument to study space radiation and its effects on electronics.



JASON-2 radiation model

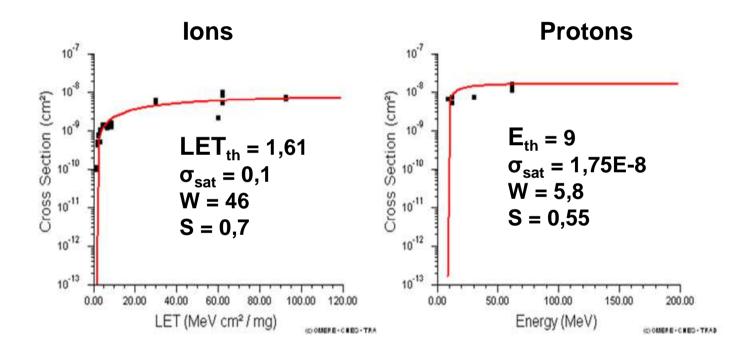
Ray tracing method: a detector is placed inside the die and shielding thicknesses crossed by 1800 rays drawn around the detector are calculated.



Rays crossing 40 to 170 mm around IDT71V3558

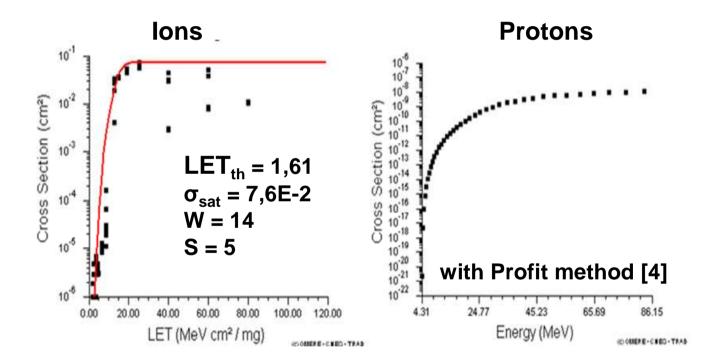
Part	Min thickness crossed (mm)	Max thickness crossed (mm)		
IDT71V3558	5.5	257		
K7A801800	5.5	170		
HM628512 (x 2)	4.2	210 and 330		

IDT IDT71V3558 SSRAM - SEU

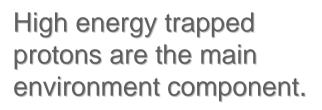


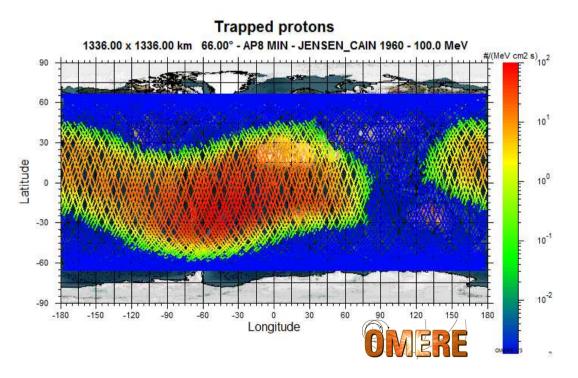
ESTEC June 5 2013

Samsung K7A801800 SSRAM - SEU



Hitachi HM628512 SRAM - SEL





Results: LEO mission

Radiation environment defined in OMERE

- Trapped Protons: AP8 min
- Solar Protons: ESP
- Cosmic Rays: GCR ISO solar min

Results: LEO mission

		Rate pree (/device	Rate		
Component	Effect	Fixed shielding 1 g/cm ²	Sector file	measured in-orbit (/device/day)	
IDT IDT71V3558	SEU	3,6	2,1	2,5	
Samsung K7A801800	SEU	1,2	0,75	0,4	
Hitachi HM628512	SEL	0,71	0,46	0,41	

Rates calculated with a fixed spherical shielding of 1 g/cm2 around the part are higher than the ones calculated with the sector file.

Prediction rates calculated with the sector file are in better agreement with the in-orbit measured rate.

Radiation environment defined in OMERE

	Out-of-flare	In-flare
Trapped protons	AP8 min	AP8 min
Average Solar protons	ESP	
Solar flare ions and protons		CREME96 worst day
Cosmic Rays	GCR ISO solar min	GCR ISO solar min

Results: a hypothetical GEO mission

Part	Out-of-flare (/device/day)				
	1 g/cm ²		Sector file		
	ions	p+	ions	p+	
IDT	0,27	0,27	1,97E-2	7,52E-2	
IDT71V3558	Tota	al: 0,54	Total: 0,0949		
Samsung K7A801800	0,15	8,43E-2	7,08E-2	2,39E-2	
	Tota	al: 0,23	Total: 0,0947		
Hitachi HM628512	0,21	2,3E-2	0,12	1E-2	
	Total: 0,23		Total: 0,13		

<u>For out-of-flare conditions</u>: rates calculated with a fixed spherical shielding of 1 g/cm2 around the part are 2 to 6 times higher than the ones calculated with the sector file.

Results: a hypothetical GEO mission

Part	Out-of-flare (/device/day)			In-flare (/device/day)				
	1 g	J/cm²	Sector file		1 g/cm ²		Sector file	
	ions	p+	ions	p+	ions	p+	ions	p+
IDT IDT71V3558	0,27	0,27	1,97E-2	7,52E-2	57,3	100	2,64	21,6
	Total: 0,54		Total: 0,0949		Total: 157,3		Total: 24,24	
Samsung K7A801800	0,15	8,43E-2	7,08E-2	2,39E-2	36,3	34,3	1,69	7,36
	Tota	al: 0,23	<u>3</u> Total: 0,0947		Total: 70,6		Total: 9,05	
Hitachi HM628512	0,21	2,3E-2	0,12	1E-2	89,6	8,15	8,21	3,1
	Total: 0,23		Total: 0,13		Total: 97,75		Total: 11,31	

For out-of-flare conditions: rates calculated with a fixed spherical shielding of 1 g/cm2 around the part are 2 to 6 times higher than the ones calculated with the sector file.

<u>For in-flare conditions</u>: rates calculated with a fixed spherical shielding of 1 g/cm2 around the part are 7 to 9 times higher than the ones calculated with the sector file.

- The shielding of the satellite structure and on-board equipment can have a great impact on predicted SEE rates.
- Predictions using a fixed shielding thickness of 1 g/cm2 overestimate SEE rates since the shielding thickness crossed by proton and ion trajectories is higher.
- The effect is more important for solar ion event induced SEE.
- High energy (>100 MeV) proton fluxes observed at the JASON-2 low earth orbit are little affected by the shielding.
- Errors due to bad Weibull fit definition can be of the same order or greater than the ones presented here [Sukhaseum et al., 2011].

- Similar calculations will be performed, on a different orbit and radiation environment, for polar orbit SAC-D mission (launched in June 2011) that accommodates CARMEN-1, a similar equipment as the one placed aboard JASON-2.
- CARMEN equipment at GEO?

Poster at RADECS 2011:

Shielding Geometry Effect on SEE Prediction Using the New OMERE Release: JASON-2 Mission Case Study, by A. Varotsou, N. Chatry, P-F. Peyrard, F. Bezerra, A. Samaras, E. Lorfèvre and R. Ecoffet

