

CNES-ESA Final Presentation Days 2013 5th & 6th June ESA-ESTEC Newton Room

ENHANCED LOW-DOSE RATE SENSITIVITY ANALYSIS Summary Test Results and Analysis on Bipolar Devices.

ESA CONTRACT Nº: 4000100717/2010/F/WE

Prepared by: Demetrio López / Presented by: Gonzalo Fdez.

- Project introduction.
- Bipolar parts.
 - List of candidates
 - Test conditions
 - Applicable Test Plans
 - Radiation facilities
 - Test results summary
- RADFET study was included in the same contract and managed by Tyndall.

- Contract reference: 4000100717/2010/F/WE
 "ENHANCED LOW-DOSE RATE SENSITIVITY ANALYSIS"
- Main Objetive of the contract:
 - To test and analyse ELDRS sensitivity of bipolar linear devices and RadFETs, of relevance for the Galileo project and GNSS Evolution.

Function	Part Type
Converters	AD565
Voltage Reference	AD584 / REF02
Amplifier	LMH6702 / OP27 / OP470
Optocoupler	OLH249 / OLH449 / 66183-105
Comparators	PM139
Transistor	SOC5551
PWM	UC1525 / UC1825 / UC1843 / UC1846

List of candidates

MFR	PART TYPE	PART TYPE DESCRIPTION	
MPC U	66183-105	Proton Radiation Tolerant 6Pin Optocoupler	
AND U	AD565AT	12 BIT D/A Converter	
AND U	AD584S	Pin programmable voltage reference	
NSC U	LMH6702JF-QMLV	Linear, UltraLow Distorsion, Current Feedback, Wideband OP.Amplifier	
ILK U	OLH249	Radiation Tolerant Phototransistor Hermetic Optocoupler	
AND U	OP-27A	Low noise precision operational amplifier.	
AND U	OP-470A	Very low noise, quad, operational amplifier.	
AND U	PM139XMQMLR	Quad voltage comparator.	
AND U	REF02AJQMLR	Precision reference +5-volt adjustable output.	
STM F	SOC5551HRB	Transistors, High Voltage, NPN	
TEX U	UC1525BJQMLV	Regulating Pulse Width Modulator	
TEX U	UC1825J	Pulse Width Modulator Controller, Off-Line Current Mode	
TEX U	UC1843	Current Mode Pulse Width Modulator	
TEX U	UC1846J-SP	High Speed Pulse Width Modulator Controller	

Test Conditions

Level of Interest	100 krad(Si)
Dose rates	Range of 36 rad(Si)/h versus Range of 360 rad(Si)/h
Energy	1.33/1.17 MeV
Radiation Source	Cobalt-60
Proposed Steps	5 krad, 10 krad, 20 krad, 35 krad, 50 krad, 100 krad, ann24h, ann168h
Bias distribution	50% bias and 50% unbiased A total of 20 samples were tested per part type.

6

Test plans control

PART TYPE	COMPONENT NUMBER	PLAN REFERENCE	PACKAGE	APPROVED
AD565AT	5962-9689202VJA	ATGSP-RP-69 lss:1	DIL-24	15/06/2011
OP-470A	5962R8856501VCA	ATGSP-RP-70 lss:1	DIL-14	15/06/2011
AD584S	5962R3812801VGA	ATGSP-RP-71 lss:1	CAN-8	18/05/2011
PM139XMQMLR	5962R8773902VDA	ATGSP-RP-72 lss:1	FP-14	18/05/2011
REF02AJQMLR	5962R8551401VGA	ATGSP-RP-73 lss:1	CAN-8	18/05/2011
OP-27A	5962R9468002VGA	ATGSP-RP-74 lss:1	CAN-8	15/06/2011
OLH249	OLH249	ATGSP-RP-75 lss:1	DIL-6	15/06/2011
OLH449	OLH449	ATGSP-RP-76 lss:1	TO 5	15/06/2011
UC1843	UC1843-HiRel	ATGSP-RP-77 lss:1	DIL-8	15/06/2011
UC1825J	5962-8768104VEA	ATGSP-RP-78 lss:1	DIL-16	15/06/2011
SOC5551HRB	520101905FR	ATGSP-RP-79 lss:1	LCC-3	18/05/2011
66183-105	66183-105	ATGSP-RP-80 lss:1	LCC-6	15/06/2011
LMH6702JF-QMLV	5962F0254601VPA	ATGSP-RP-81 lss:1	DIL-8	15/06/2011
UC1846J-SP	5962-8680603VEA	ATGSP-RP-82 lss:1	DIL-16	18/05/2011
UC1525BJQMLV	5962-8951105VEA	ATGSP-RP-83 lss:1	DIL-16	18/05/2011

ALTER TECHNOLOGY TÜV NORD S.A.U.

Estec Co-60 Facility

Current Status on : 22/2/2013 Activity : 1886.3 Curies (69.8 TBq) Rate at 1m : 33 Rads/min (0.33 Gy/min) Since Reload : 554 Days 8200mm Power & Signal Feed-through Ports 0 Trolley with DUT and Dosimeter 2000Ci Co-60 Source O Ы 6 Power & Signal Feed-through Ports PLC, Dosimetry, RPS & Data Logging Ceiling Height : 3720mm Beam Height : 1100mm

ALTER TECHNOLOGY has used two different facilities for performing the requested radiation tests

8

BIAS circuit and boards

We cover all the processes: circuit design, PCB design layout, PCB manufacturing, assembly and verification, installing adequate low insertion force sockets & SW test development for parameters monitoring

9

TID Execution

PART TYPE	PLAN REF.	REPORT REF.	FACILITY	STARTED DATE
AD565AT	ATGSP-RP-69 lss:1	ATN-RR-012/2012	ESTEC	15/02/2012
OP-470A	ATGSP-RP-70 lss:1	ATN-RR-008/2012	ESTEC	15/02/2012
AD584S	ATGSP-RP-71 lss:1	ATN-RR-005/2012	ESTEC	15/02/2012
PM139XMQMLR	ATGSP-RP-72 lss:1	ATN-RR-011/2012	ESTEC	15/02/2012
REF02AJQMLR	ATGSP-RP-73 lss:1	ATN-RR-007/2012	ESTEC	15/02/2012
OP-27A	ATGSP-RP-74 lss:1	ATN-RR-006/2012	ESTEC	15/02/2012
OLH249	ATGSP-RP-75 lss:1	ATN-RR-002/2012	ESTEC	15/02/2012
OLH449	ATGSP-RP-76 lss:1	ATN-RR-003/2012	ESTEC	15/02/2012
UC1843	ATGSP-RP-77 lss:1	ATN-RR-009/2012	ESTEC	15/02/2012
UC1825J	ATGSP-RP-78 lss:1	HRX/TID/1030	UCL	21/02/2012
SOC5551HRB	ATGSP-RP-79 lss:1	ATN-RR-001/2012	ESTEC	15/02/2012
66183-105	ATGSP-RP-80 lss:1	ATN-RR-004/2012	ESTEC	15/02/2012
LMH6702JF-QMLV	ATGSP-RP-81 lss:1	HRX/TID/1028-9	UCL	06/03/2012
UC1846J-SP	ATGSP-RP-82 lss:1	ATN-RR-010/2012	ESTEC	15/02/2012
UC1525BJQMLV	ATGSP-RP-83 lss:1	HRX/TID/1032-3	UCL	11/06/2012

Function	Converters
Part type	AD565
design to achieve hig	pliance range of the AD565A is ideally suited for fast, low noise, accurate voltage output
Parameters	RA, DNL, AE, VOS, BPZE, VREF, IOUT_UNI, IOUT_BIP, PSRR1, PSRR2, ICC, IEE, IIH, IIL
Conclusions	The results obtained during the irradiation test show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si). The most affected parameters are the DNL and AE that starts to be
In a constant sector of the constant sector o	out of limits at 13krad step and AE that starts to be out of limits at 30krad step.

AD565 plots examples.

10.000 V, 7.500 V, 5.000 V and 2.50 available by the addition of external Parameters ICC, VOUT1, V VRLOAD4, IOS Conclusions The results obta dose when test 100krad(Si). The most aff Image: I	cision voltage reference offering pin-programmable selection of four popular output voltages: 00 V. Other output voltages, above, below or between the four standard outputs, are resistors. Input voltage may vary between 4.5 and 30 volts OUT2, VOUT3, VOUT4, VRLINE1, VRLINE2, VRLOAD1, VRLOAD2, VRLOAD3, ained during the irradiation test, show that this lot is sensitive to the cumulative radiation ed at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of
VRLOAD4, IOS Conclusions The results obta dose when test 100krad(Si). The most aff Image: Conclusion of the results obta dose when test 100krad(Si). The most aff Image: Conclusion of the results obta dose when test 100krad(Si). The most aff Image: Conclusion of the results obta dose when test 100krad(Si). The most aff Image: Conclusion of the results obta dose when test 100krad(Si). The most aff Image: Conclusion of the results obta dose when test 100krad(Si). The most aff Image: Conclusion of the results obta dose obta dose when test 100krad(Si). The most aff Image: Conclusion of the results obta dose obta dose obta dose obta dose obta dose obta dose when test 100krad(Si). The most aff Image: Conclusion obta dose	ained during the irradiation test, show that this lot is sensitive to the cumulative radiation
dose when test 100krad(Si). The most aff -VOUT's: The biased ON. 1	
-VOUT's: The biased ON. 1	ected parameters are the VOUT's, VRLINE's and VRLOAD's parameters.
-VRLINE's: 1 biased ON. 1 tested at LD irradiation st in the sampl -VRLOAD's: during all irr	e results show a higher degradation in the samples biased OFF than the The degradation in the samples tested at ELDR is higher than the ted at LDR. The results show a higher degradation in the samples biased OFF than the The degradation in the samples tested at ELDR is higher than the samples R. In the VRLINE1 and VRLINE 2 parameters are within limits during all teps except at ANN 168h step, where the obtained values are out of limits es tested at ELDR. The results show that this parameter doesn't have a high deviation adiation steps except at the ANN 168h step. Even In the VRLOAD1 and here are some values that are out of limits in the samples biased OFF at

Function	Voltage references	
Part type	REF02	
•	ecision voltage references provide a stable 10.0 V, 5.0 V, or 2.5 V output with onse to variations in supply voltage, ambient temperature or load conditions.	
Parameters	ISY, VO, IOS, LD reg, LN reg.	
	The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si). The most affected parameters are the Vo and VRLINE. The Vo parameter starts to be out of limits at the 13krad step and VRLINE parameter, at the 20krad step. The VRLOAD doesn't show a high deviation vs total dose, although the serial number R2 is out of limits at the ANN168 step. The samples tend to recover their initial values during the annealing process.	

In general, the samples show a higher degradation in the samples biased OFF that the samples biased ON.

REF02 plot example.

Function		Amplifiers
i unction		· ·
Part type	LMH6702	
wide dynamic ra	ange systen al's current	deband, DC coupled monolithic operational amplifier designed specifically for ns requiring exceptional signal fidelity. Benefit- feedback architecture, the LMH6702 offers unity gain stability at exceptional ernal compensation
Parameters	IBN, IBI, \	/IO, CMRR, ICC±, PSRR±
<section-header><section-header><image/><image/><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	All para	meters remained within specification limits all along testing.

-IIB: starts to be out of limits at 20krad step in the samples biased OFF. The results show that the samples biased OFF have a higher degradation than the samples biased ON. The samples submitted to the LDR test have a higher degradation than the samples submitted to the ELDR test.

-VOUT's: although the results obtained in this parameter show that it is sensitive to the cumulative radiation dose rate all the Vout parameters are within limits during all irradiation steps. In general, the samples biased OFF have a higher degradation than the samples

Function	Amplifiers
Part type	OP27
•	operational amplifier combines the low offset and drift of the OP07 with both high speed ets down to 25 μ V and drift of 0.6 μ V/°C maximum make the OP27 ideal for precision lications
Parameters VO	DS, IOS, IIB, PSRR, VOUT(1), VOUT(2), IS, SR, CMRR, AVO(1), AVO(2)
rad the -SF bia -AV the OF All For	S: although the results obtained in this parameter show that it is sensitive to the cumulative diation dose rate, the IS parameter is within limits during all irradiation steps. In general, a samples biased OFF have a higher degradation than the samples biased ON. R: starts to be out of limits at 13 krad step in the samples biased OFF. The samples ased OFF have a higher degradation than the samples biased OFF. The samples ased OFF have a higher degradation than the samples biased ON. VO's: the serial numbers R7 and R8 start to be out of limits in the AVO (2) parameter in a LDR test at 100krad step. Along the lines of the other parameters, the samples biased F show a higher degradation than the samples biased ON.

OP27 plots examples

ANN168

----- ELDR ON

LDR ON

LDR OFF

Function	Amplifiers
Part type	OP470
	high-performance monolithic quad operational amplifier with exceptionally low voltage noise, Hz max, offering comparable performance to ADI's industry standard OP27.
Parameters	VIO, IIO, IIB±, IIB-, AVS, IS±, SR±, PSRR, PSRR ±, CMRR
Conclusions (1/2)	The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si).
	The most affected parameters are the IIB±, IIO, AVS, SR± and PSRR.
TOPAL COLE ADDRESSION Marcal State Marc	-IIB±: starts to be out of limits at 20krad step in the ELDR test. The results show that the samples biased OFF have a higher degradation than the samples biased ON. The samples submitted to the LDR test have a higher degradation than the samples submitted to the
Data Specific State Endoting Present/Property Desting Compared Link An (Hot 27/30 /F /F /E Apple Compared Link Apple	ELDR test.
	-IIO: this parameter starts to be out of limits at 50krad step in the ELDR test. The results show that the samples biased OFF have a higher degradation than the samples biased ON. For this parameter clearly different behaviours between ELDR and LDR test are not observed.
	-AVS: this parameter starts to be out of limits at 13krad step in the samples biased OF in the

-AVS: this parameter starts to be out of limits at 13krad step in the samples biased OF in the ELDR and LDR test. The results show that the samples biased OFF have a higher degradation than the samples biased ON. For this parameter clearly different behaviour between ELDR and LDR test are not observed.

F				
Function		Amplifiers		
Part type		OP470		
	•	mance monolithic quad operational amplifier with exceptionally low voltage noise, ering comparable performance to ADI's industry standard OP27.		
Parameters	VIO, IIO, IIE	B±, IIB-, AVS, IS±, SR±, PSRR, PSRR ±, CMRR		
<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>	 -SR±: the obtained results show that the SR+ starts to be out of limits at 50krad step in the samples OFF. The samples biased ON are within limits during all irradiation steps. The SR- is out of limits only 100krad step in the samples biased OFF. The samples biased ON are within limits during all irradiation steps. The results show that the samples biased OFF have a higher degradation than the samples book on and the samples submitted to the LDR test have a higher degradation that the samples submittee ELDR test. -PSRR: the worst results have been obtained in the PSRR- parameter that starts to be out of limits at 13krad step. Along the lines of the other parameters, the samples biased OFF have a higher degradation. All parameters tend to recover its initial values during the annealing process. The rest of the parameters remain within limits during all irradiation steps. 			

Function Optocouplers

Part type

OLH249

The OLH249 is designed especially for hi-rel applications requiring optical isolation in radiation environments such as gamma, neutron and proton radiation with high current transfer ratio and low saturation Vce. Each optocoupler consists of a light emitting diode and a NPN silicon phototransistor electrically isolated but optically coupled inside a hermetic TO - 5 package. Electrical parameters are similar to the JEDEC registered 4N49 optocoupler but with much better CTR degradation characteristics

IC(ON), VCE(sat), ICE(OFF), VF, IR, CTR1, CTR2, CTR3, CTR4, CTR5, CTR6, CTR7. **Parameters**

Conclusions

The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si).

The most affected parameters are the IC(ON), VCE(SAT) and the CTR's but they remain within specification limits. The samples tend to recover their initial values during the annealing process.

-IC(ON): The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed from 50krad onwards.

-VCE(SAT): The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed from 100krad onwards.

CTR's: The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed from 50krad onwards.

For the rest of the parameters, it is not observed a clear differentiate behaviour between ELDR, LDR, On and Off biased parts

OLH 249 plots examples

Francisco	Onte e combane		
Function	Optocouplers		
Part type	OLH449		
Parameters	IC(ON), VCE(sat), IC(OFF), VF, IR, CTR1, CTR2, CTR3, CTR4, CTR5, CTR6, CTR7.		
Conclusions	The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si)		
	The most affected parameters are the IC(ON), VCE(SAT) and the CTR's. The IC(ON) parameter starts to be out of limits at the 35krad step.		
Compare Toy and a second secon	The other parameters remain within specification limits. The samples tend to recover their initial values during the annealing process.		
Mathematics State and the state	-IC(ON): The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed from 50krad onwards.		
Construction of the second of	-VCE(SAT): The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed from 100krad onwards.		
	CTR's: The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed from 50krad onwards.		
	For the rest of the parameters, it is not observed a clear differentiate behaviour between ELDR, LDR, On and Off biased parts		

Function	Optocouplers	
Part type	66183-105	
	gle channel device electrically similar to the 4N49. This product has been designed to be more tolerant to he 66183 optocoupler is packaged in a hermetically sealed 6 pin leadless chip carrier (LCC).	
Parameters	R, VF, ICEO, IC(ON), VCE(SAT), CTR1, CTR2, CTR3, CTR4, CTR5, CTR6, CTR7, V(BR)CBO, V(BR)CEO, V(BR)EBO.	
Conclusions (1/2)	The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si).	
Marcolastication Marcolastication Marcolastication Marcolastication Construction Marcolastication Marcolastication Marcolastication Construction Marcolastication Marcolastication Marcolastication Construction Marcolastication Marcolastication Marcolastication Construction Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolastication Marcolast	The most affected parameters are the IC(ON), VCE(SAT), CTR's, VCBO, and VCEO(BR). The IC(ON) parameter starts to be out of limits at 50krad step for LDR and at 100krad step for ELDR. The other parameters remain within specification limits. The samples tend to recover their initial values during the annealing process.	
Main Sector Se	-IC(ON): The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed at 100krad and annealing 24h steps.	
A THE WALL AND A AND A STATE AND A	-VCE(SAT): The results show a higher degradation in the samples biased OFF than the biased ON. A slight difference between LDR and ELDR in the samples biased On is observed at 100krad step.	

Function		Optocouplers		
Part type	66183-105			
The 66183 is a single channel device electrically similar to the 4N49. This product has been designed to be more tole proton radiation. The 66183 optocoupler is packaged in a hermetically sealed 6 pin leadless chip carrier (LCC).				
Parameters	^I R, VF, ICEO, IC(ON), VCE(SAT), CTR1, CTR2, CTR3, CTR4, CTR5, CTR6, CTR7, V(BR)CBO, V(BR)CEO, V(BR)EBO.			
Conclusions (2/2)	-CTR's: The results show a higher degradation in the samples biased OFF than the bias ON.			
	A slight difference between LDR and ELDR in the samples biased On is observed at 100krad and annealing 24h steps.			
	-VCBO: The results show a higher degradation in the samples biased ON at ELDR.			
	-VCEO(BR): The results show a higher degradation in the samples biased OFF than the biased ON.			
		st of the parameters, it is not observed a clear differentiate behaviour between DR, On and Off biased parts		

Function	Comparators	
Part type	PM139	
power consumptic voltage range incl voltage - coupled	our independent voltage comparators, each with precision DC specifications. Low offset voltage, bias current, on and output saturation voltage are offered in a design that features single power supply operation. The input udes ground for convenient single supply operation. The 2mA power supply current, independent of supply with the single supply operation, makes this comparator ideal for low power applications. Open collector imum applications flexibility	
Parameters	VIO, IIO, IIB, AV, IOL, ICC, CMRR, VSAT, PSRR, ISINK.	
	The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si). The most affected parameters are the IB±, IIO and AV. The IB+ and the IIO are out of limits at the 100krad and ANN24h due to the fact that the operational #4 in the serial number 5 (ON) at ELDR test, shows an anomalous behaviour in respect to the other samples. This sample was measured several times obtaining the same values.	
	Consequently we can discard contact problems or wrong measurements. If we do not take into account the values obtained in the operational #4 in the serial number 5 (ON), all the parameters remain under their limits during the whole irradiation test.	
	All the parameters tend to recover their initial values during the annealing process.	

In general the samples biased ON show a higher degradation than the samples biased OFF.

Function		Transistors		
Part type		SO5551HR		
	•	ar epitaxial NPN transistor in LCC-3 packages. It is specifically designed for aerospace Hi-Rel according to the 5201-019 specification		
Parameters	ICBO, IEBO	0, VCE(sat)1, VCE(sat)2, VBE(sat)1, VBE(sat)2, hFE1, hFE2, hFE3.		
Conclusions	The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si).			
Internet sectors Mail Sector Mail Sector Mail Sector Internet Sectors Non-Sectors Mail Sector Mail Sector	within sp	affected parameters are the ICBO, VCE(SAT)1,2 and hFE's but they remain ecification limits.		
Very wards BED care Very State (Series)	The sample	es tend to recover their initial values during the annealing process.		
Albeiter Angel : State and State : Sta	-ICBO: The ELDR.	results show a higher degradation in the samples tested at LDR than the samples tested at		
And a second sec	-VCE(SAT) [·] ON.	1,2: The results show a higher degradation in the samples biased OFF than the samples biased		
	•	ation in the samples biased OFF at LDR is similar to the degradation in the samples biased ON the 50krad and 100krad steps.		
	For the rest of the parameters, it is not observed a clear differentiate behaviour between ELDR, and Off biased parts			

SO5551HR Plots examples

Function	PWM		
Part type	UC1525A		
external parts count	when used in	th modulator integrated circuits are designed to offer improved performance and lowered designing all types of switching power supplies. The on-chip +5.1V reference is trimmed to range of the error amplifier includes the reference voltage, eliminating external resistors.	
Parameters	VREF, VRLINE, VRLOAD, IOS, VIO, IIB±, IIO, AVOL, VOL1, VOH1, CMRR, PSRR, ISS, VSS, ISD, VTH, VOL2 A, VOL3 A, VOL2 B, VOL3 B, VOH2 A, VOH3 A, VOH2 B, VOH3 B, VUL, IS.		
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	All parameters remain within specification limits.		

Function	PWM		
I unction			
Part type	UC1825		
care was given to m slew rate of the erro	of PWM control ICs is optimized for high frequency switched mode power supply applications. Particular ninimizing propagation delays through the comparators and logic circuitry while maximizing bandwidth and or amplifier. This controller is designed for use in either current-mode or voltage mode systems with the voltage feed-forward.		
Parameters	ICC, ISTART, VREF, VRLINE, VRLOAD, ISC, F0, ΔFO/ΔV, VIM, VIV, VOS, IOS, IIB±, AVOL, CMRR, PSRF IO(SINK), IO(SRC), VOH1, VOL1, SR±, IBRAMP, DC(RANGE) A, DC(RANGE) B, VTH, ICHG, IDCHG, VOL2(1) A, VOL2(1) B, VOL2(2) A, VOL2(2) B, VOH2(1) A, VOH2(1) B, VOH2(2) A, VOH2(2) B, VSTART, VHYS.		
Conclusions	All parameters remained within specification limits all along testing.		
CIER SALTER			
TOTAL DOSE RADIATION ELDR TEST REPORT Print Spin (2014) Print Spin (2014) Description (2014) Description (2014) Biologic documents Biologic documents Biologic documents Biologic documents			
Alter Tradensinger - TVV Rear S.A.S.: Tradensis Charler M. 1996/10 (Salade Stational) Alter Tradensinger - TVV Rear S.A.S.: Tradensis Responses a view Rear Restant Carbon			
Положини ФОЛОСК зак.11 Бих зак.97,10 илитик С.10% Тоц. Кордитализи			

Function	PWN	Λ
Part type	UC1	843
current mode cor featuring start up latched operation	trol schemes with a r current less than 1 m , a PWM comparator	vices provides the necessary features to implement off-line or dc-to-dc fixed frequency ninimal external parts count. Internally implemented circuits include under-voltage lockout nA, a precision reference trimmed for accuracy at the error amp input, logic to insure which also provides current limit control, and a totem pole output stage designed to output stage, suitable for driving N-Channel MOSFETs, is low in the off state.
Parameters	, , ,	RLOAD, IOS, FOSC1, FOSC2, VIN, IIB, AVOL, PSRR ISINK, ISOURCE, VOH1PIN1, VIN2, IIB2, VOL2A, VOL2B, VOH2A, VOH2B, VTH, VMIN, ISTART, ICC.

Conclusions

The results obtained during the irradiation test, show that this lot is sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of 100krad(Si).

		-	
Left and reliaburd Linear contt poter	reduced terrored	1941	of Incorporations
Land Born Street	Robalder Anteplane Blair Anteplane Lat.	THE AREA	1. 1998 - 199 - 1998 - 199
A an ingelant	and the second second	and a	Vise1
HIN DESIGN	Territoper and		Au methA
Sour Ceder suites Weinigen Statistics	Burght Nov. 7 Instalate Domes: 2 Greek Device: 2	100	45.75
Statute and brook	Кондус таких нау Соек Паки и и и изгладија	PRALOT AND	and soluted south they for an the
Control of the second s	Alternational analysis boot and X See short A - See short A	Longer C	Honord San Harved S Underset X Test Circuit: (g
		stead francis	
97 MA MA MA POLA POLA POLA	ارین ۱۹۹۹ ایسر ایزینان کامیتیر کی میر	, 64 (100, 100) (10 (10) 90 (10)	
and in the same	Contractions	and terror taken	Ad brought

The most affected parameter is the VREF that starts to be out of limits at 50krad step. The degradation observed in the samples biased OFF is higher than the observed in the samples biased ON.

In the IIB parameter of the Error Amplifier it is observed a great deviation with regard to the initial values, but the parameter remains under limits during all irradiation test.

In general, the samples biased OFF show a higher degradation than the samples biased ON.

UC1843 plots examples

100krad(Si).

Function	P	PWM		
Part type	U	JC1846		
schemes while ma improved line regu advantages incluc	aintaining a minir ulation, enhanced le inherent pulse	provides all of the necessary features to implement fixed frequency, current mode control mum external parts count. The superior performance of this technique can be measured in d load response characteristics, and a simpler, easier-to-design control loop. Topological e-by-pulse current limiting capability, automatic symmetry correction for push-pull converters, nodules" while maintaining equal current sharing.		
Parameters	VO, VRLINE, VRLOAD, IOS, fOSC, ΔfOSC, VSOH, VSOL, ISYNC(1), VIO(1), IIB(1), IIO(1), AVS, CMRR, PSRR, ISYNC(2), ISOURCE, VOH(1), VOL(1), AV, VIDIFF, VIO(2), CMRR(2), PSRR(2), IIB(2), IIO(2), VCLO, IIB(3), VTH, VOL(2), VOL(3), VOH(2), VOH(3), +VSU-TH, ICC.			
Conclusions	The results obtained during the irradiation test, show that this lot is slightly sensitive to the cumulative radiation dose when tested at dose rates of 35.4 rad(Si)/h and 323.7 rad(Si)/h up to a cumulative dose of			

However, all parameters are within limits during the whole irradiation test.

- The parts off biased normally have higher radiation degradation than the biased ones.
- There are types in which the ELDR suppose an increase of degradation, others the standard LDR is the worst condition, but also there are several cases in which no big differences are observed between both test conditions.
- To have a complete overview, please check ESCIES which will show the complete radiation test reports.

NORD

THANK YOU FOR YOUR ATTENTION

Demetrio López Innovation Director Demetrio.lopez@altertechnology.com ALTER TECHNOLOGY TÜV NORD C/ de la Majada 3 28760 Tres Cantos / Madrid Tel. +34 918041893

Gonzalo Fernandez Technical Advisor and Procurement Quality Director <u>Gonzalo.fernandez@altertechnology.com</u> ALTER TECHNOLOGY TÜV NORD C/ Tomás A. Edison, 4 41092 Isla de la Cartuja / Sevilla Tel. +34 954467050