

Technische Universität Braunschweig

TN-IDA-RAD-10/1

K. Gruermann, D. Walter, F. Gliem

Heavy Ion Test of 2-Gbit Micron DDR2-SDRAM Devices MT47H256M8

Preliminary Contributions to the Test Report

March, 18, 2010

ESA ESTEC contract: 4200021711/08/NL/PA TO: Reno Harboe-Sørensen, Véronique Ferlet-Cavrois, TEC-QEC

1. Scope

The primary goal of the Nov. 2009 Jyväskylä test campaign was to check the functionality of the new DDR2 test bed, and to collect some test data sets for the development of realistic test data evaluation S/W.

In consequence of the positive outcome of the Nov. 09 test we regard the DDR2 test bed to be fully functional for tests at room temperature.

Never the less improvements are always possible. At the time being the implementation of an error screen zoom is in progress. This will allow the visual differentiation between adjacent data symbols.

Also envisaged is the implementation of a temperature controlled device heating.

Randomly distributed Single Errors are of minor concern. These errors easily can be coped even by Hamming error correction.

But, clustered errors are prone to exhaust the capability of the error correction. In consequence, the characterization of the various types of clustered errors and the evaluation of respective cross section curves are of major importance.

Clustered errors can be differentiated into two main categories:

- a) Those, which directly are caused by a single hit of adjacent structures of the cell array, and
- b) SEFIs, which originate from particle induced malfunctions of the control circuitry.

A related aspect is the study of countermeasures against SEFIs. Re-initialization of the device is known to be an effective countermeasure. But, it slows down the effective access rate. Which re-initialization rate should be applied? How much resistant SEFIs withstand the re-initialization?

Another related aspect is whether SEFI induced cluster errors will be induced during nonaccess periods. Refresh is still running and the generation of cluster errors due to particle induced disturbances of the refresh circuitry is imaginable.

Relevant questions are (i) whether those SEFIs occur, and in case(ii) whether they are only transient or even all / some of them persistent, and again in case (iii) whether re-initialization during non-access periods should be recommended.

Another point, often highlighted in the literature, is hard errors / weak cells. From published papers we see that these hard errors are a specific very rare type of distributed single errors, which can be wiped out easily by the usual error correction, together with the more frequent soft single errors.

Therefore, we plan to inspect our test data sets for hard errors, but this will not be an high priority task. In particular, at this time we don't plan to investigate the influence of the refresh period on the occurrence frequency of hard errors.

To summarize, at this time our main goals are partly test related, namely

- a) Collection of test data sets in three test modes (M3 "Static" Storage, M1 Dynamic Read and M2 Dynamic Marching) at room temperature, and in a following test also at elevated temperature (up to 75°C).
- b) Studying the effect of re-initialization (Two initialization modes, several reinitialization periods)

and partly S/W related, namely

- c) to improve the automatic detection, classification and extraction of the different cluster error / SEFI types in order to gain reliable SEFI type specific cross section curves,
- d) to implement the zoom function to improve the resolution of the screen image
- e) to extend the address range of the test bed to cover the full address range of up to 8 Gbit devices

2. Preliminary Discussion of Nov. 2009 Test Results

Due to a S/W limitation of the test bed all tests were restricted to one half of the address space (1 Gbit).

2.1 Storage Mode M3b (Read after Irradiated Storage with Re-Initialization)

See Tab. 1 + 6, Fig. 1 + 2

Initialization was performed every second and before read out.

First four static errors already at N, LET = $1.8 \text{ MeV cm}^2 \text{ mg}^{-1}$.

No SEFIs at all, i.e. no SEFI-disturbances of Refresh (because of cyclic re-initialization ?)

At high LET we see a very minor difference between raw data and clean data after passing the cluster extraction filter

No significant difference between both samples.

Cross section curves of raw (Fig. 1) and cleaned (Fig. 2) single bit errors are identical

Tab. 6 shows the spectrum of bit errors per 32 bit word. Significant counts of double and tri-

ple bit errors appear only at Xe, LET = 60).

The error map (Tab. 11) shows only single errors.

2.2 Read Mode M1 (Dynamic Read under Irradiation)

See Tab2 + 3, Fig. 3 + 4, 7 - 11

Tab. 12 shows the error map without repetitive initialization and Tab 13 the error map with initialization. In Tab 12 the periodic occurrence of row errors is significant. The reason for this periodicity still is not understood.

The more favorable appearance of device Mic1d (second column) is misleading. This originates from the occurrence of a persistent SEFI after about 10 test cycles, indicated by a red bar near the lower edge.

Initialization removes those row errors completely at low LETs and reduces by much at high LETs.

Fig. 3 shows the cross section of raw single errors for both, operation without initialization (M1a) and with initialization (M1b). As already mentioned the raw single error count does no more include errors belonging to regular row and column SEFI pattern.

Surprisingly, both single error cross sections differ by much. This seems strange because initialization shouldn't affect the cell status. In other words, the difference should be caused by still not extracted SEFI related "pseudo"-single errors.

This could be verified by inspection of the respective regions of the data set.

In consequence S/W filter were developed to extract cluster-like single error accumulations.

Fig. 8 and 9 show one regular row and one regular column error. Each bin represents a 32-bit word. It appears in red if one ore more of these 32 bit are erroneous. These SEFI data easily are extractable.

But, besides of these regular SEFIs other repetitive error pattern appear. Examples are shown in Fig. 10 and 11.

The extraction of the more sophisticated "pseudo"-cluster errors and additionally of all 32-bit words affected by multi-bit errors delivers the clean cross section, which represents only cell errors.

Then, the clean cross section curves of read with and without initialization become identical.

The classification of the extracted " ≥ 1 bit error per 32 bit word" is in progress. Possibly, they reflect more complicated repetitive error pattern.

Tab 7 shows for M1a (no repetitive initialization) the spectral distribution of the error count per 32-bit word, (i) for raw data in red and (ii) for cleaned data in blue.

Apparently the red spectrum with peaks at 8 and 16 bit points to SEFI induced corruptions of larger data elements.

Tab. 8 shows the same spectrum for M1b (with initialization once per row).

The broad SEFI related spectra disappear with the exception of one persistent SEFI of device Mic1f at Ar.

2.3 Marching Mode M2 (Continuous Sequence of Write, Storage and Read Operations under Irradiation)

See Tab. 4 + 5, 9 + 10, 14 + 15, Fig. 5 + 6

Again repetitive re-initialization reduces the SEFI occurrence drastically.

Also, we see periodic row SEFIs.

Further cleaning of the raw data results in identical single error cross section curves with and without re-initialization.

2010_03_18		O static, device	[cm ² die ⁻¹]		1,73E-25	1,73E-25	1,52E-23	6,94E-24	1,11E-23	6,99E-21	6,42E-21	6,70E-21	3,23E-20	3,56E-20	3,40E-20	8,13E-20	7,70E-20	7,91E-20	2,41E-19	1,94E-19	2,18E-19
		U static, bit	[cm [*] bit ⁻¹]		1,86E-16	1,86E-16	1,63E-14	7,45E-15	1,19E-14	7,50E-12	6,89E-12	7,20E-12	3,47E-11	3,82E-11	3,65E-11	8,72E-11	8,27E-11	8,50E-11	2,59E-10	2,09E-10	2,34E-10
	Cleaned	Static	Errors	[bits]	4,00E+00	4,00E+00	3,50E+01	1,60E+01	5,10E+01	1,61E+03	1,48E+03	3,09E+03	7,45E+03	8,21E+03	1,57E+04	3,75E+03	3,55E+03	7,30E+03	2,78E+04	2,24E+04	5,02E+04
	Raw	Static	Errors	[bits]	4,00E+00	4,00E+00	3,50E+01	1,60E+01	5,10E+01	1,60E+03	1,50E+03	3,10E+03	7,50E+03	8,20E+03	1,57E+04	4,00E+03	3,70E+03	7,70E+03	5,20E+04	5,20E+04	1,04E+05
	Average	Flux rem ² .4	[cm s]		76336		18692	18519		1575	2000		1818	2041		370	417		935	787	
	Time	[s]			262	262	107	108	215	127	100	227	110	86	208	108	96	204	107	127	234
60	Fluence	[cm ²]			2,00E+07	2,00E+07	2,00E+06	2,00E+06	4,00E+06	2,00E+05	2,00E+05	4,00E+05	2,00E+05	2,00E+05	4,00E+05	4,00E+04	4,00E+04	8,00E+04	1,00E+05	1,00E+05	2,00E+05
2 - 5, 20	Mode				M3b																
'H256M8, JYV Nov.		IS	each time	[ms]	1000		1000	1000		1000	1000		1000	1000		1000	1000		1000	1000	
DDR2-SDRAM MT47		Read Adress	dependend IS	(0x0001 = each row)																	
Micron [Write Adress	dependend IS	(0x0001 = each row)																	
i Init)		Date	Code		0742		0742	0742		0742	0742		0742	0742		0742	0742		0742	0742	
rage with		Tested	Range	[Bit]	1E+09		1E+09	1E+09													
after sto	Device	Marking			Mic1d		Mic1a	Mic1d		Mic1a	Mic1d		Mic1a	Mic1d		Mic1d	Mic1a		Mic1a	Mic1d	
(Read	LETerr	[MeV	cm*mg']		1,8		3,6	3,6		10,1	10,1		18,5	18,5		32,1	32,1		60	60	
Mode: M3b	lon				15N4+	15N4+	20Ne6+	20Ne6+	20Ne6+	40Ar12+	40Ar12+	40Ar12+	56Fe15+	56Fe15+	56Fe15+	82Kr22+	82Kr22+	82Kr22+	131Xe35+	131Xe35+	131Xe35+
	Run	RADEF			139		125	132		63	111		149	160		169	175		232	240	
	Run	PA			131	ы	94	114	ы	S	51	ы	157	197	м	226	245	w	263	287	ы

Tab. 1: Mode M3b (Read after storage with Initialisation)

2010_03_1		X] [cm2bit-1]		6 7,22E-15	7,22E-16	4 1,51E-13	4 2,17E-13	1,84E-13	1 1,18E-10	2 4,46E-11	1 9,50E-11	1 1,73E-10	1,08E-10	1 4,84E-10	2 3,98E-11	2,62E-10	0 9,74E-10	1 8,92E-10	9,33E-10	0 2,63E-05	0 1,16E-05	0 3,16E-05	1.93E-05
		Xerrida	[cm2bit-1		7,75E-0t		1,62E-0-	2,33E-0-		1,27E-0	4,79E-0;	1,02E-0	1,86E-0		5,20E-0	4,27E-0;		1,05E+0	9,57E-0		2,82E+0	1,25E+0	3,40E+0	
																persistant SEFI						persistant SEFI		
	Cleaned	SEU	during Irr.		1,55E+02		3,24E+02	4,66E+02		2,54E+04	1,01E+03	2,04E+04	3,72E+04		1,04E+05	8,55E+03		4,18E+04	3,83E+04		2,82E+05	1,25E+05	3,40E+05	
	Raw	SEU	during Irr.		1,26E+02			2,44E+03		6,44E+06	6,77E+04	6,08E+06	4,66E+06		1,22E+07			1,54E+06	2,93E+06		6,81E+06		1,07E+07	
	Average	Flux	cm s		121951		36364	23256		1538	1400	1923	2020		1695	2062		367	417		1020	794	741	
600	Time	[s]			164	164	55	86	141	130	15	104	66	348	118	97	215	109	96	205	86	126	135	250
lov. 2 - 5, 2(Fluence	[cm ²]			2,00E+07	2,00E+07	2,00E+06	2,00E+06	4,00E+06	2,00E+05	2,10E+04	2,00E+05	2,00E+05	6,21E+05	2,00E+05	2,00E+05	4,00E+05	4,00E+04	4,00E+04	8,00E+04	1,00E+05	1,00E+05	1,00E+05	3 00E+05
T47H256M8, JYV N		Read Adress	denendend IS	(0x0001 = each row)																				
on DDR2-SDRAM N		Write Adress	dependend IS	(0x0001 = each row)																				
Micre		Tested	Adress	[Bit]	6E+10		1E+10	2E+10		3E+10	4E+09	1E+09	2E+10		3E+10	1E+09		2E+10	2E+10		2E+10	2E+10	3E+10	
ut Init)			Loops	[1E9 Bit]	58		13	5		29	4	~	22		26	~		23	21		23	21	8	
only witho	Device	Marking			Mic1d		Mic1a	Mic1d		Mic1a	Mic1a	Mic1d	Mic1f		Mic1a	Mic1d		Mic1d	Mic1a		Mic1a	Mic1d	Mic1d	
(Read (LETeff	[MeV	cm [*] mg ⁻¹]		1,8		3,6	3,6		10,1	10,1	10,1	10,1		18,5	18,5		32,1	32,1		60	09	60	
Mode: M1a	lon				15N4+	15N4+	20Ne6+	20Ne6+	20Ne6+	40Ar12+	40Ar12+	40Ar12+	40Ar12+	40Ar12+	56Fe15+	56Fe15+	56Fe15+	82Kr22+	82Kr22+	82Kr22+	131Xe35+	131Xe35+	131Xe35+	121Yo254
	Run	RADEF			140		127	133		96	97	112	118		150	162		170	176		234	241	242	
	Run	PA			133	ы	100	116	ы	12	16	53	72	ы	159	205	ы	228	247	ы	267	289	294	

Tab. 2: Mode M1a (Read only without Initialisation)

2010_03_18		Xeeline	[cm2bit-1]		9,27E-15	9,27E-15	1,42E-13	8,01E-14	1,11E-13	1,23E-10	9,18E-11	2,50E-11	1,38E-10	9,46E-11	4,58E-10	4,74E-10	4,66E-10	1,03E-09	8,99E-10	9,65E-10	2,54E-09	3,29E-09	3,29E-09	3,04E-09
		Xeel dou	[cm2bit-1]		9'95E-06		1,53E-04	8,60E-05		1,33E-01	9,86E-02	2,69E-02	1,48E-01		4,92E-01	5,09E-01		1,11E+00	9,65E-01		2,73E+00	3,53E+00	3,53E+00	
												persistant SEFI												
	Cleaned	SEU	during Irr.		1,99E+02		3,05E+02	1,72E+02		2,65E+04	1,97E+04	5,38E+03	2,96E+04		9,84E+04	1,02E+05		4,42E+04	3,86E+04		2,73E+05	3,53E+05	3,53E+05	
	Raw	SEU	during Irr.		1,99E+02		3,05E+02	1,72E+02		2,63E+04	1,96E+04		2,94E+04		9,74E+04	1,01E+05		4,45E+04	3,90E+04		4,15E+05	5,05E+05	5,60E+05	
	Average	Flux	[cm_s_]		76628		30303	22222		1563	1942	2083	2041		1739	2062		381	417		1053	709	725	
6	Time	[s]			261	261	99	90	156	128	103	96	98	425	115	97	212	105	96	201	95	141	138	374
Nov. 2 - 5, 200	Fluence	[cm ²]			2,00E+07	2,00E+07	2,00E+06	2,00E+06	4,00E+06	2,00E+05	2,00E+05	2,00E+05	2,00E+05	8,00E+05	2,00E+05	2,00E+05	4,00E+05	4,00E+04	4,00E+04	8,00E+04	1,00E+05	1,00E+05	1,00E+05	3,00E+05
MT47H256M8, JYV		Read Adress	dependend IS	(0x0001 = each row)	RAIS 0x0001		RAIS 0x0001	RAIS 0x0001		RAIS 0x0001	RAIS 0x0001		RAIS 0x0001		RAIS 0x0001	RAIS 0x0001		RAIS 0x0001	RAIS 0x0001		RAIS 0x0001	RAIS 0x0001	RAIS 0x2000	
cron DDR2-SDRAM		Write Adress	dependend IS	(0x0001 = each row)																				
Mic		Tested	Adress Range	[Bit]	6E+10		2E+10	2E+10		3E+10	2E+10	2E+10	2E+10		3E+10	2E+10		2E+10	2E+10		2E+10	3E+10	3E+10	
lnit)			Loops	1E9 Bit]	57		15	20		27	23	5	22		25	22		23	5		21	31	31	
only with	Device	Marking			Mic1d		Mic1a	Mic1d		Mic1a	Mic1d	Mic1f	Mic1f		Mic1a	Mic1d		Mic1d	Mic1a		Mic1a	Mic1d	Mic1d	
(Read	LETer	[MeV	cm [*] mg ⁻¹]		1,8		3,6	3,6		10,1	10,1	10,1	10,1		18,5	18,5		32,1	32,1		60	60	60	
Mode: M1b	lon				15N4+	15N4+	20Ne6+	20Ne6+	20Ne6+	40Ar12+	40Ar12+	40Ar12+	40Ar12+	40Ar12+	56Fe15+	56Fe15+	56Fe15+	82Kr22+	82Kr22+	82Kr22+	131Xe35+	131Xe35+	131Xe35+	131Xe35+
	Run	RADEF			141		128	134		94	113	120	121		151	163		171	177		235	243	247	
	Run	PA			136	м	104	120	м	7	57	80	83	м	163	208	ы	232	251	м	271	298	311	ы

Tab. 3: Mode M1b (Read only with Initialisation)

		Mode: M/28	(March	ing withou	ut Init)		MICRON UURZ-SI	JRAM MI4/HZ56M8	1, JYV NOV. Z - 5, ZU	0A						2010_03_
Run	Run	lon	LETer	Device						Fluence	Time	Average	Raw	Cleaned		
DA	RADE	<u> </u>	[MeV	Marking		Tested	Write Adress	Read Adress	S	[cm ²]	[s]	Flux	SEU	SEU	X	X
			cm²mg']		Loops	Range	dependend IS	dependend IS	during Marching			[cm_s_]	during Irr.	during Irr.	[cm2bit-1]	[cm2bit-1
					[1E9 Bit]	[Bit]	(0x0001 = each row)	(0x0001 = each row)								
139	142	15N4+	1,8	Mic1d	20	2E+10				2,00E+07	255	78431	0,00E+00	0,00E+00	2'00E-08	4,66E-1
ы		15N4+								2,00E+07	265					4,66E-17
107	129	20Ne6+	3,6	Mic1a	6	1E+10				2,00E+06	115	17391		2,13E+02	1,07E-04	9,92E-14
123	135	20Ne6+	3,6	Mic1d	80	9E+09				2,00E+06	95	21053	1,07E+02	9,60E+01	4,80E-05	4,47E-14
м		20Ne6+								4,00E+06	210					7,19E-1
18	98	40Ar12+	10,1	Mic1a	11	1E+10				2,00E+05	127	1575	9,15E+03	4,52E+03	2,26E-02	2,10E-1
8	114	40Ar12+	10,1	Mic1d	8	9E+09				2,00E+05	100	2000	1,29E+05	2,35E+03	1,17E-02	1,09E-1
8	122	40Ar12+	10,1	Mic1f	7	8E+09		,	,	2,00E+05	83	2410	6,46E+04	4,26E+03	2,13E-02	1,98E-11
ы		40Ar12+								6,00E+05	310					1,73E-1
166	152	56Fe15+	18,5	Mic1a	œ	9E+09				2,00E+05	97	2062	3,15E+05	9,15E+03	4,57E-02	4,26E-11
211	164	56Fe15+	18,5	Mic1d	œ	9E+09	,	,	,	2,00E+05	66	2020	1,90E+05	9,27E+03	4,64E-02	4,32E-11
ы		56Fe15+								4,00E+05	196					4,29E-1
235	172	82Kr22+	32,1	Mic1d	80	9E+09				4,00E+04	101	396	5,36E+03	4,82E+03	1,20E-01	1,12E-1(
254	178	82Kr22+	32,1	Mic1a	7	8E+09				4,00E+04	89	449	5,34E+03	4,33E+03	1,08E-01	1,01E-10
ы		82Kr22+								8,00E+04	190					1,06E-1(
274	236	131Xe35+	80	Mic1a	б	1E+10				1,00E+05	107	935	6,86E+05	3,37E+04	3,37E-01	3,14E-10
30	244	131Xe35+	60	Mic1d	12	1E+10				1,00E+05	142	704	3,71E+05	3,11E+04	3,11E-01	2,89E-10
ы		131Xe35+								2,00E+05	249					3,02E-1(

~ ~

Tab. 4: Mode M2a (Marching without Initialisation)

03_18		Â4 IL	Zbit-1]		ЭЕ-16	9E-16	ЭЕ-14	0E-15	9E-14	9E-12	1E-12	₫-12	9E-12	<u>8</u> -11	1E-12	9E-11	<u>е</u> -11	ЭË-11	<u></u> ЗЕ-11	7E-11	2E-11	<u>п</u> -11	8E-11	7E-10	₫-10	1E-10	4E-10
2010		×,			7 4,19	4,19	5 1,49	6 8,85	1,19	3 7,89	3 8,4	3 8,0	3 7,29	1,1%	8,7,	2 3,55	2 4,00	2 4 00	3,83	3,8	1 9,32	2 9,00	9,16	1 2,57	1 2.3	1 2.7	2,5
		Xsell d	[cm2bit-		4,50E-0		1,60E-0	9,50E-C		8,47E-0	9,04E-C	8,63E-C	7,83E-C	1,28E-0		3,86E-0	4,30E-C	4,33E-C	4,11E-0		1,00E-C	9,66E-C		2,76E-C	2,51E-0	2,91E-C	
	p		÷		00		é	Đ		03	8	ß	ŝ	8		ß	ŝ	ŝ	03		03	ŝ		04	04	64	-
	Cleane	SEU	during		9,00E+		3,20E+	1,90E+		1,69E+	1,81E+	1,73E+	1,57E+	2,56E+		7,72E+	8,60E+	8,66E+	8,23E+		4,00E+	3,87E+		2,76E+	2,51E+	2,91E+	
	ław	ŝEU	ing Irr.		00+E0		DE+01	0E+01		5E+03	9E+03	SE+03	E+03	8E+04		0E+03	9E+04	3E+04	1 E+03		9E+03	6E+03		3E+04	2E+04	DE+04	
	9		dur		1 5,0(0 4,2(3,00		0 6	1,75	1,72	1,90	2,6		5,7(00 100	13	8		6 0	ю́ Ю́		3,05	2,7	4,9(_
	Averag	Flux			7843		20000	21053		1527	1563	1563	2000	2020		1942	1818	2020	2128		430	440		806	709	730	
	Time	[s]			255	255	10 10	95	195	131	128	128	9	66	586	103	110	66	94	406	63	91	184	124	141	137	402
	nence	cm Ĵ			0E+07	0E+07	0E+06	0E+06	90+30	0E+05	0E+05	0E+05	0E+05	0E+05	90+30	0E+05	0E+05	0E+05	0E+05	0E+05	0E+04	0E+04	0E+04	0E+05	0E+05	0E+05	0E+05
6003	Ē	_			2,0	20	2,0	9	4,0	2,0	20	0 0	20	20	÷	2,0	2,0	2,0	0 N	8,0	4	4,0	8,0	-	- 0	- 0	о, С
. 2 - 5, 2			arching							1-IS-R2	11-IS-R2	1-IS-R2	1-IS-R2	1-IS-R2													
YV Nov.		S	during Ma		'		'			W-IS-R	W-IS-R	W-IS-R	-W-IS-R	-W-IS-R		'	'	'	'		'	'		•	'	'	
56M8, J				(///	_		_	_		Ś	Ś	ŝ	Ś	Ñ		_	_		_		_	_		_	_		-
T47H2		d Adress	ndend IS	= each re	, 00000		00000	0000X0			000000	0×0400				000000	0x2000	0x2000	000000		.0000X0	0000X0		0000X0	000000	0x2000	
ORAM N		Read	edep	(0X0001	RAIS		RAIS	RAIS			RAIS	RAIS				RAIS	RAIS	RAIS	RAIS		RAIS	RAIS		RAIS	RAIS	RAIS	
DR2-SC	,	ss	1IS	h row)	001		001	001			00	400				001	00	000	001		001	001		100	001	000	
icron D		hite Adre	pendend	001 = eac	AIS 0x00		AIS 0x00	AIS 0x00		•	AIS 0x00	AIS 0x0				AIS 0x00	AIS 0x2(AIS 0x20	AIS 0x00		AIS 0x00	AIS 0x00		AIS 0x00	AIS 0x00	AIS 0x20	
M	,	\$	ĕ	(0X0)	í M		Ń	Ñ		0	ŝ	Š	0	0		Ń	ŝ	Ń	ŝ		Ň	Ń		Ń	Š	Š	
		Tested	Range	[94]	2E+1(9E+0(ЭE+О(1E+1(1E+1(10,+10	10,10	9E+0		9E+00	10+10	9E+0	9E+0(8E+0	8E+0		1E+1(1E+1(1E+1(
l Init)			Loops	[1E9 BII)	20		ω	60		5	9	5	თ	60		60	თ	8	80		7	7		6	12	1	
hing with	Device	Marking			Mic1d		Mic1a	Mic1d		Mic1a	Mic1a	Mic1a	Mic1d	Mic1f		Mic1a	Mic1a	Mic1a	Mic1d		Mic1d	Mic1a		Mic1a	Mic1d	Mic1d	
(March	LET. [[MeV	[.gm,m		1,8		3,6	3,6		10,1	10,1	10,1	10,1	10,1		18,5	18,5	18,5	18,5		32,1	32,1		60	60	60	
M2b			8		4+	4	+98	+9=	5 9	12+	12+	12+	12+	12+	12	15+	15+	15+	15+	15+	22+	22+	ង	e35+	e35+	e35+	e35+
Mode:	ō	L.			15N	15N	20N	20Nt	20Nt	40Ar	40Ar	40Ar	40Ar	40Ar	40Ar	56Fe	56Fe	56Fe	56Fe	56Fe	82Kr.	82Kr.	82Kr	131Xe	131X(131X(131X(
	Run	RADE			143		130	136		66	100	101	115	119		153	154	155	165		173	179		237	245	246	
	Run	IDA			141	ы	109	125	м	20	2	24	8	76	ы	172	175	179	215	ы	239	256	ы	278	305	308	ы

Tab. 5: Mode M2b (Marching with Initialisation)

	Mic1a	Mic1d	 11
15N4+		Exects 90000 1 0000 0000 0000 0000 0000 0000	
20Ne6+	Errers 9000 100000 100000 10000 10000 100000 10000 10000 10000 100000	80000 1 <th></th>	
40Ar12+	10000 1 <th>Errors</th> <th></th>	Errors	
56Fe15+	Errers 90000 100000 100000 100000 10000 10000 10000 10000 10000 10000	Ecces 90000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
82Kr22+	Errers	Freese 90003 90000 900000 900000 90000 90000 90000 90000 90000 90000 90000	
131Xe35+	Excess 9000	Ercess	

Tab. 6: Error Distribution falsified bit count per 32bit word in Mode M3b

Tab. 7: Error Distribution falsified bit count per 32bit word in Mode M1a

Tab. 8: Error Distribution falsified bit count per 32bit word in Mode M1b

Tab. 9: Error Distribution falsified bit count per 32bit word in Mode M2a

Tab. 10: Error Distribution falsified bit count per 32bit word in Mode M2b

 Tab. 11: Error Maps in Mode M3b (Read after Storage with Initialisation)

Tab. 12: Error Maps in Mode M1a (Read only without Initialisation)

Tab. 13: Error Maps in Mode M1b (Read only with Initialisation)

Tab. 14: Error Maps in Mode M2a (Marching without Initialisation)

 Tab. 15: Error Maps in Mode M2b (Marching with Initialisation)

Fig. 1: Raw Cross section of single bit errors in Mode M3b

Fig. 2: Cleaned Cross section of single bit errors in Mode M3b

Fig. 3: Raw Cross section of single bit errors in Mode M1

Fig. 4: Cleaned Cross section of single bit errors in Mode M1

Fig. 5: Raw Cross section of single bit errors in Mode M2

Fig. 6: Cleaned Cross section of single bit errors in Mode M2

Fig. 7: Screen of the GSEOS Filter Program

Fig. 8: Standard Row Error

Fig. 9: Standard Col Error

Fig. 10: New Cluster Error Typ 1

Fig. 11: New Cluster Error Typ 2